c7404a3ff8
This allows calls to `allocate_memory()` while the VM is running, it will then allocate from the GC heap (unless there is a suitable hole among the supervisor allocations), and when the VM exits and the GC heap is freed, the allocation will be moved to the bottom of the former GC heap and transformed into a proper supervisor allocation. Existing movable allocations will also be moved to defragment the supervisor heap and ensure that the next VM run gets as much memory as possible for the GC heap. By itself this breaks terminalio because it violates the assumption that supervisor_display_move_memory() still has access to an undisturbed heap to copy the tilegrid from. It will work in many cases, but if you're unlucky you will get garbled terminal contents after exiting from the vm run that created the display. This will be fixed in the following commit, which is separate to simplify review.
463 lines
14 KiB
C
463 lines
14 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2020 Scott Shawcroft for Adafruit Industries
|
|
* Copyright (c) 2020 Artur Pacholec
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
/*
|
|
* Copyright 2018 NXP
|
|
* All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include "boards/board.h"
|
|
#include "supervisor/port.h"
|
|
|
|
#include "fsl_device_registers.h"
|
|
|
|
#include "common-hal/microcontroller/Pin.h"
|
|
#include "common-hal/pulseio/PulseIn.h"
|
|
#include "common-hal/pulseio/PulseOut.h"
|
|
#include "common-hal/pwmio/PWMOut.h"
|
|
#include "common-hal/rtc/RTC.h"
|
|
#include "common-hal/busio/SPI.h"
|
|
|
|
#include "reset.h"
|
|
|
|
#include "tusb.h"
|
|
|
|
#if CIRCUITPY_GAMEPAD
|
|
#include "shared-module/gamepad/__init__.h"
|
|
#endif
|
|
#if CIRCUITPY_GAMEPADSHIFT
|
|
#include "shared-module/gamepadshift/__init__.h"
|
|
#endif
|
|
#if CIRCUITPY_PEW
|
|
#include "shared-module/_pew/PewPew.h"
|
|
#endif
|
|
#include "supervisor/shared/tick.h"
|
|
|
|
#include "clocks.h"
|
|
|
|
#include "fsl_gpio.h"
|
|
#include "fsl_lpuart.h"
|
|
|
|
// Device memories must be accessed in order.
|
|
#define DEVICE 2
|
|
// Normal memory can have accesses reorder and prefetched.
|
|
#define NORMAL 0
|
|
|
|
// Prevents instruction access.
|
|
#define NO_EXECUTION 1
|
|
#define EXECUTION 0
|
|
|
|
// Shareable if the memory system manages coherency. This means shared between memory bus masters,
|
|
// not just CPUs.
|
|
#define NOT_SHAREABLE 0
|
|
#define SHAREABLE 1
|
|
|
|
//
|
|
#define NOT_CACHEABLE 0
|
|
#define CACHEABLE 1
|
|
|
|
#define NOT_BUFFERABLE 0
|
|
#define BUFFERABLE 1
|
|
|
|
#define NO_SUBREGIONS 0
|
|
|
|
extern uint32_t _ld_flash_size;
|
|
extern uint32_t _ld_stack_top;
|
|
|
|
extern uint32_t __isr_vector[];
|
|
|
|
extern uint32_t _ld_ocram_bss_start;
|
|
extern uint32_t _ld_ocram_bss_size;
|
|
extern uint32_t _ld_ocram_data_destination;
|
|
extern uint32_t _ld_ocram_data_size;
|
|
extern uint32_t _ld_ocram_data_flash_copy;
|
|
extern uint32_t _ld_dtcm_bss_start;
|
|
extern uint32_t _ld_dtcm_bss_size;
|
|
extern uint32_t _ld_dtcm_data_destination;
|
|
extern uint32_t _ld_dtcm_data_size;
|
|
extern uint32_t _ld_dtcm_data_flash_copy;
|
|
extern uint32_t _ld_itcm_destination;
|
|
extern uint32_t _ld_itcm_size;
|
|
extern uint32_t _ld_itcm_flash_copy;
|
|
|
|
extern void main(void);
|
|
|
|
// This replaces the Reset_Handler in startup_*.S and SystemInit in system_*.c.
|
|
__attribute__((used, naked)) void Reset_Handler(void) {
|
|
__disable_irq();
|
|
SCB->VTOR = (uint32_t) &__isr_vector;
|
|
__set_MSP((uint32_t) &_ld_stack_top);
|
|
|
|
/* Disable I cache and D cache */
|
|
SCB_DisableICache();
|
|
SCB_DisableDCache();
|
|
|
|
// Changing the FlexRAM must happen here where the stack is empty. If it is in a function call,
|
|
// then the return will jump to an invalid address.
|
|
// Configure FlexRAM. The e is one block of ITCM (0b11) and DTCM (0b10). The rest is two OCRAM
|
|
// (0b01). We shift in zeroes for all unimplemented banks.
|
|
IOMUXC_GPR->GPR17 = (0xe5555555) >> (32 - 2 * FSL_FEATURE_FLEXRAM_INTERNAL_RAM_TOTAL_BANK_NUMBERS);
|
|
|
|
// Switch from FlexRAM fuse config to the IOMUXC values.
|
|
IOMUXC_GPR->GPR16 |= IOMUXC_GPR_GPR16_FLEXRAM_BANK_CFG_SEL(1);
|
|
|
|
// Let the core know the TCM sizes changed.
|
|
uint32_t current_gpr14 = IOMUXC_GPR->GPR14;
|
|
current_gpr14 &= ~IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ_MASK;
|
|
current_gpr14 |= IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ(0x6);
|
|
current_gpr14 &= ~IOMUXC_GPR_GPR14_CM7_CFGITCMSZ_MASK;
|
|
current_gpr14 |= IOMUXC_GPR_GPR14_CM7_CFGITCMSZ(0x6);
|
|
IOMUXC_GPR->GPR14 = current_gpr14;
|
|
|
|
#if ((__FPU_PRESENT == 1) && (__FPU_USED == 1))
|
|
SCB->CPACR |= ((3UL << 10*2) | (3UL << 11*2)); /* set CP10, CP11 Full Access */
|
|
#endif /* ((__FPU_PRESENT == 1) && (__FPU_USED == 1)) */
|
|
|
|
/* Disable Watchdog Power Down Counter */
|
|
WDOG1->WMCR &= ~WDOG_WMCR_PDE_MASK;
|
|
WDOG2->WMCR &= ~WDOG_WMCR_PDE_MASK;
|
|
|
|
/* Watchdog disable */
|
|
WDOG1->WCR &= ~WDOG_WCR_WDE_MASK;
|
|
WDOG2->WCR &= ~WDOG_WCR_WDE_MASK;
|
|
RTWDOG->CNT = 0xD928C520U; /* 0xD928C520U is the update key */
|
|
RTWDOG->TOVAL = 0xFFFF;
|
|
RTWDOG->CS = (uint32_t) ((RTWDOG->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK;
|
|
|
|
/* Disable Systick which might be enabled by bootrom */
|
|
if (SysTick->CTRL & SysTick_CTRL_ENABLE_Msk)
|
|
{
|
|
SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
|
|
}
|
|
|
|
/* Disable MPU */
|
|
ARM_MPU_Disable();
|
|
|
|
// Copy all of the itcm code to run from ITCM. Do this while the MPU is disabled because we write
|
|
// protect it.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_itcm_size) / 4; i++) {
|
|
(&_ld_itcm_destination)[i] = (&_ld_itcm_flash_copy)[i];
|
|
}
|
|
|
|
// The first number in RBAR is the region number. When searching for a policy, the region with
|
|
// the highest number wins. If none match, then the default policy set at enable applies.
|
|
|
|
// This is an undocumented region and is likely more registers.
|
|
MPU->RBAR = ARM_MPU_RBAR(8, 0xC0000000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, DEVICE, NOT_SHAREABLE, NOT_CACHEABLE, NOT_BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_512MB);
|
|
|
|
// This is the SEMC region where external RAM and 8+ flash would live. Disable for now, even though the EVKs have stuff here.
|
|
MPU->RBAR = ARM_MPU_RBAR(9, 0x80000000U);
|
|
MPU->RASR = ARM_MPU_RASR(NO_EXECUTION, ARM_MPU_AP_NONE, DEVICE, NOT_SHAREABLE, NOT_CACHEABLE, NOT_BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_1GB);
|
|
|
|
// FlexSPI2 is 0x70000000
|
|
|
|
// This the first 1MB of flash is the bootloader and CircuitPython read-only data.
|
|
MPU->RBAR = ARM_MPU_RBAR(10, 0x60000000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_1MB);
|
|
|
|
// The remainder of flash is the fat filesystem which could have code on it too. Make sure that
|
|
// we set the region to the minimal size so that bad data doesn't get speculatively fetched.
|
|
// Thanks to Damien for the tip!
|
|
uint32_t region_size = ARM_MPU_REGION_SIZE_32B;
|
|
uint32_t filesystem_size = &_ld_filesystem_end - &_ld_filesystem_start;
|
|
while (filesystem_size > (1u << (region_size + 1))) {
|
|
region_size += 1;
|
|
}
|
|
// Mask out as much of the remainder as we can. For example on an 8MB flash, 7MB are for the
|
|
// filesystem. The region_size here must be a power of 2 so it is 8MB. Using the subregion mask
|
|
// we can ignore 1/8th size chunks. So, we ignore the last 1MB using the subregion.
|
|
uint32_t remainder = (1u << (region_size + 1)) - filesystem_size;
|
|
uint32_t subregion_size = (1u << (region_size + 1)) / 8;
|
|
uint8_t subregion_mask = (0xff00 >> (remainder / subregion_size)) & 0xff;
|
|
|
|
MPU->RBAR = ARM_MPU_RBAR(11, 0x60100000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, subregion_mask, region_size);
|
|
|
|
// This the ITCM. Set it to read-only because we've loaded everything already and it's easy to
|
|
// accidentally write the wrong value to 0x00000000 (aka NULL).
|
|
MPU->RBAR = ARM_MPU_RBAR(12, 0x00000000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_RO, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_32KB);
|
|
|
|
// This the DTCM.
|
|
MPU->RBAR = ARM_MPU_RBAR(13, 0x20000000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_32KB);
|
|
|
|
// This is OCRAM. We mark it as shareable so that it isn't cached. This makes USB work at the
|
|
// cost of 1/4 speed OCRAM accesses. It will leave more room for caching data from the flash
|
|
// too which might be a net win.
|
|
MPU->RBAR = ARM_MPU_RBAR(14, 0x20200000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_512KB);
|
|
|
|
// We steal 64k from FlexRAM for ITCM and DTCM so disable those memory regions here.
|
|
MPU->RBAR = ARM_MPU_RBAR(15, 0x20280000U);
|
|
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, 0x80, ARM_MPU_REGION_SIZE_512KB);
|
|
|
|
/* Enable MPU */
|
|
ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk);
|
|
|
|
/* We're done mucking with memory so enable I cache and D cache */
|
|
SCB_EnableDCache();
|
|
SCB_EnableICache();
|
|
|
|
// Copy all of the data to run from DTCM.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_dtcm_data_size) / 4; i++) {
|
|
(&_ld_dtcm_data_destination)[i] = (&_ld_dtcm_data_flash_copy)[i];
|
|
}
|
|
|
|
// Clear DTCM bss.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_dtcm_bss_size) / 4; i++) {
|
|
(&_ld_dtcm_bss_start)[i] = 0;
|
|
}
|
|
|
|
// Copy all of the data to run from OCRAM.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_ocram_data_size) / 4; i++) {
|
|
(&_ld_ocram_data_destination)[i] = (&_ld_ocram_data_flash_copy)[i];
|
|
}
|
|
|
|
// Clear OCRAM bss.
|
|
for (uint32_t i = 0; i < ((size_t) &_ld_ocram_bss_size) / 4; i++) {
|
|
(&_ld_ocram_bss_start)[i] = 0;
|
|
}
|
|
|
|
__enable_irq();
|
|
main();
|
|
}
|
|
|
|
safe_mode_t port_init(void) {
|
|
CLOCK_SetMode(kCLOCK_ModeRun);
|
|
|
|
clocks_init();
|
|
|
|
#if CIRCUITPY_RTC
|
|
rtc_init();
|
|
#endif
|
|
|
|
// Always enable the SNVS interrupt. The GPC won't wake us up unless at least one interrupt is
|
|
// enabled. It won't occur very often so it'll be low overhead.
|
|
NVIC_EnableIRQ(SNVS_HP_WRAPPER_IRQn);
|
|
|
|
// Note that `reset_port` CANNOT GO HERE, unlike other ports, because `board_init` hasn't been
|
|
// run yet, which uses `never_reset` to protect critical pins from being reset by `reset_port`.
|
|
|
|
if (board_requests_safe_mode()) {
|
|
return USER_SAFE_MODE;
|
|
}
|
|
|
|
return NO_SAFE_MODE;
|
|
}
|
|
|
|
void reset_port(void) {
|
|
spi_reset();
|
|
|
|
#if CIRCUITPY_AUDIOIO
|
|
audio_dma_reset();
|
|
audioout_reset();
|
|
#endif
|
|
#if CIRCUITPY_AUDIOBUSIO
|
|
i2sout_reset();
|
|
//pdmin_reset();
|
|
#endif
|
|
|
|
#if CIRCUITPY_TOUCHIO && CIRCUITPY_TOUCHIO_USE_NATIVE
|
|
touchin_reset();
|
|
#endif
|
|
|
|
// eic_reset();
|
|
|
|
#if CIRCUITPY_PULSEIO
|
|
pulseout_reset();
|
|
#endif
|
|
#if CIRCUITPY_PWMIO
|
|
pwmout_reset();
|
|
#endif
|
|
|
|
#if CIRCUITPY_RTC
|
|
rtc_reset();
|
|
#endif
|
|
|
|
#if CIRCUITPY_GAMEPAD
|
|
gamepad_reset();
|
|
#endif
|
|
#if CIRCUITPY_GAMEPADSHIFT
|
|
gamepadshift_reset();
|
|
#endif
|
|
#if CIRCUITPY_PEW
|
|
pew_reset();
|
|
#endif
|
|
|
|
//reset_event_system();
|
|
|
|
reset_all_pins();
|
|
}
|
|
|
|
void reset_to_bootloader(void) {
|
|
SNVS->LPGPR[0] = DBL_TAP_MAGIC;
|
|
reset();
|
|
}
|
|
|
|
void reset_cpu(void) {
|
|
reset();
|
|
}
|
|
|
|
extern uint32_t _ld_heap_start, _ld_heap_end, _ld_stack_top, _ld_stack_bottom;
|
|
uint32_t *port_stack_get_limit(void) {
|
|
return &_ld_stack_bottom;
|
|
}
|
|
|
|
uint32_t *port_stack_get_top(void) {
|
|
return &_ld_stack_top;
|
|
}
|
|
|
|
bool port_has_fixed_stack(void) {
|
|
return true;
|
|
}
|
|
|
|
uint32_t *port_heap_get_bottom(void) {
|
|
return &_ld_heap_start;
|
|
}
|
|
|
|
// Get heap top address
|
|
uint32_t *port_heap_get_top(void) {
|
|
return &_ld_heap_end;
|
|
}
|
|
|
|
// Place the word into the low power section of the SNVS.
|
|
void port_set_saved_word(uint32_t value) {
|
|
SNVS->LPGPR[1] = value;
|
|
}
|
|
|
|
uint32_t port_get_saved_word(void) {
|
|
return SNVS->LPGPR[1];
|
|
}
|
|
|
|
uint64_t port_get_raw_ticks(uint8_t* subticks) {
|
|
uint64_t ticks = 0;
|
|
uint64_t next_ticks = 1;
|
|
while (ticks != next_ticks) {
|
|
ticks = next_ticks;
|
|
next_ticks = ((uint64_t) SNVS->HPRTCMR) << 32 | SNVS->HPRTCLR;
|
|
}
|
|
if (subticks != NULL) {
|
|
*subticks = ticks % 32;
|
|
}
|
|
return ticks / 32;
|
|
}
|
|
|
|
void SNVS_HP_WRAPPER_IRQHandler(void) {
|
|
if ((SNVS->HPSR & SNVS_HPSR_PI_MASK) != 0) {
|
|
supervisor_tick();
|
|
SNVS->HPSR = SNVS_HPSR_PI_MASK;
|
|
}
|
|
if ((SNVS->HPSR & SNVS_HPSR_HPTA_MASK) != 0) {
|
|
SNVS->HPSR = SNVS_HPSR_HPTA_MASK;
|
|
}
|
|
}
|
|
|
|
// Enable 1/1024 second tick.
|
|
void port_enable_tick(void) {
|
|
uint32_t hpcr = SNVS->HPCR;
|
|
hpcr &= ~SNVS_HPCR_PI_FREQ_MASK;
|
|
SNVS->HPCR = hpcr | SNVS_HPCR_PI_FREQ(5) | SNVS_HPCR_PI_EN_MASK;
|
|
}
|
|
|
|
// Disable 1/1024 second tick.
|
|
void port_disable_tick(void) {
|
|
SNVS->HPCR &= ~SNVS_HPCR_PI_EN_MASK;
|
|
}
|
|
|
|
void port_interrupt_after_ticks(uint32_t ticks) {
|
|
uint8_t subticks;
|
|
uint64_t current_ticks = port_get_raw_ticks(&subticks);
|
|
current_ticks += ticks;
|
|
SNVS->HPCR &= ~SNVS_HPCR_HPTA_EN_MASK;
|
|
// Wait for the alarm to be disabled.
|
|
while ((SNVS->HPCR & SNVS_HPCR_HPTA_EN_MASK) != 0) {}
|
|
SNVS->HPTAMR = current_ticks >> (32 - 5);
|
|
SNVS->HPTALR = current_ticks << 5 | subticks;
|
|
SNVS->HPCR |= SNVS_HPCR_HPTA_EN_MASK;
|
|
}
|
|
|
|
void port_sleep_until_interrupt(void) {
|
|
// App note here: https://www.nxp.com/docs/en/application-note/AN12085.pdf
|
|
|
|
// Clear the FPU interrupt because it can prevent us from sleeping.
|
|
if (__get_FPSCR() & ~(0x9f)) {
|
|
__set_FPSCR(__get_FPSCR() & ~(0x9f));
|
|
(void) __get_FPSCR();
|
|
}
|
|
NVIC_ClearPendingIRQ(SNVS_HP_WRAPPER_IRQn);
|
|
CLOCK_SetMode(kCLOCK_ModeWait);
|
|
__WFI();
|
|
CLOCK_SetMode(kCLOCK_ModeRun);
|
|
}
|
|
|
|
/**
|
|
* \brief Default interrupt handler for unused IRQs.
|
|
*/
|
|
__attribute__((used)) void MemManage_Handler(void)
|
|
{
|
|
reset_into_safe_mode(MEM_MANAGE);
|
|
while (true) {
|
|
asm("nop;");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Default interrupt handler for unused IRQs.
|
|
*/
|
|
__attribute__((used)) void BusFault_Handler(void)
|
|
{
|
|
reset_into_safe_mode(MEM_MANAGE);
|
|
while (true) {
|
|
asm("nop;");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Default interrupt handler for unused IRQs.
|
|
*/
|
|
__attribute__((used)) void UsageFault_Handler(void)
|
|
{
|
|
reset_into_safe_mode(MEM_MANAGE);
|
|
while (true) {
|
|
asm("nop;");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Default interrupt handler for unused IRQs.
|
|
*/
|
|
__attribute__((used)) void HardFault_Handler(void)
|
|
{
|
|
reset_into_safe_mode(HARD_CRASH);
|
|
while (true) {
|
|
asm("nop;");
|
|
}
|
|
}
|