Scott Shawcroft 733094aead
Add initial RP2040 support
The RP2040 is new microcontroller from Raspberry Pi that features
two Cortex M0s and eight PIO state machines that are good for
crunching lots of data. It has 264k RAM and a built in UF2
bootloader too.

Datasheet: https://pico.raspberrypi.org/files/rp2040_datasheet.pdf
2021-01-20 19:16:56 -08:00

217 lines
8.2 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "py/runtime.h"
#include "common-hal/pwmio/PWMOut.h"
#include "shared-bindings/pwmio/PWMOut.h"
#include "shared-bindings/microcontroller/Processor.h"
#include "supervisor/shared/translate.h"
#include "src/rp2040/hardware_regs/include/hardware/platform_defs.h"
#include "src/rp2_common/hardware_clocks/include/hardware/clocks.h"
#include "src/rp2_common/hardware_gpio/include/hardware/gpio.h"
#include "src/rp2_common/hardware_pwm/include/hardware/pwm.h"
uint32_t target_slice_frequencies[NUM_PWM_SLICES];
uint32_t slice_fixed_frequency;
#define CHANNELS_PER_SLICE 2
static uint32_t channel_use;
static uint32_t never_reset_channel;
static uint32_t _mask(uint8_t slice, uint8_t channel) {
return 1 << (slice * CHANNELS_PER_SLICE + channel);
}
void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) {
never_reset_channel |= _mask(self->slice, self->channel);
never_reset_pin_number(self->pin->number);
}
void common_hal_pwmio_pwmout_reset_ok(pwmio_pwmout_obj_t *self) {
never_reset_channel &= ~_mask(self->slice, self->channel);
}
void pwmout_reset(void) {
// Reset all slices
for (size_t slice = 0; slice < NUM_PWM_SLICES; slice++) {
bool reset = true;
for (size_t channel = 0; channel < CHANNELS_PER_SLICE; channel++) {
uint32_t channel_use_mask = _mask(slice, channel);
if ((never_reset_channel & channel_use_mask) != 0) {
reset = false;
continue;
}
channel_use &= ~channel_use_mask;
}
if (!reset) {
continue;
}
pwm_set_enabled(slice, false);
target_slice_frequencies[slice] = 0;
slice_fixed_frequency &= ~(1 << slice);
}
}
pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t* self,
const mcu_pin_obj_t* pin,
uint16_t duty,
uint32_t frequency,
bool variable_frequency) {
self->pin = pin;
self->variable_frequency = variable_frequency;
self->duty_cycle = duty;
if (frequency == 0 || frequency > (common_hal_mcu_processor_get_frequency() / 2)) {
return PWMOUT_INVALID_FREQUENCY;
}
uint8_t slice = pwm_gpio_to_slice_num(pin->number);
uint8_t channel = pwm_gpio_to_channel(pin->number);
uint32_t channel_use_mask = _mask(slice, channel);
// Check the channel first.
if ((channel_use & channel_use_mask) != 0) {
return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
}
// Now check if the slice is in use and if we can share with it.
if (target_slice_frequencies[slice] > 0) {
// If we want to change frequency then we can't share.
if (variable_frequency) {
return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
}
// If the other user wants to change frequency then we can't share either.
if ((slice_fixed_frequency & (1 << slice)) != 0) {
return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
}
// If we're both fixed frequency but we don't match target frequencies then we can't share.
if (target_slice_frequencies[slice] != frequency) {
return PWMOUT_ALL_TIMERS_ON_PIN_IN_USE;
}
}
self->slice = slice;
self->channel = channel;
channel_use |= channel_use_mask;
if (!variable_frequency) {
slice_fixed_frequency |= 1 << slice;
}
if (target_slice_frequencies[slice] != frequency) {
// Reset the counter and compare values.
pwm_hw->slice[slice].ctr = PWM_CH0_CTR_RESET;
common_hal_pwmio_pwmout_set_duty_cycle(self, duty);
common_hal_pwmio_pwmout_set_frequency(self, frequency);
pwm_set_enabled(slice, true);
} else {
common_hal_pwmio_pwmout_set_duty_cycle(self, duty);
}
// Connect to the pad last to avoid any glitches from changing settings.
gpio_set_function(pin->number, GPIO_FUNC_PWM);
return PWMOUT_OK;
}
bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t* self) {
return self->pin == NULL;
}
void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t* self) {
if (common_hal_pwmio_pwmout_deinited(self)) {
return;
}
uint32_t channel_mask = _mask(self->slice, self->channel);
channel_use &= ~channel_mask;
never_reset_channel &= ~channel_mask;
uint32_t slice_mask = ((1 << CHANNELS_PER_SLICE) - 1) << (self->slice * CHANNELS_PER_SLICE + self->channel);
if ((channel_use & slice_mask) == 0) {
target_slice_frequencies[self->slice] = 0;
slice_fixed_frequency &= ~(1 << self->slice);
pwm_set_enabled(self->slice, false);
}
reset_pin_number(self->pin->number);
self->pin = NULL;
}
extern void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t* self, uint16_t duty) {
self->duty_cycle = duty;
uint16_t actual_duty = duty * self->top / ((1 << 16) - 1);
pwm_set_chan_level(self->slice, self->channel, actual_duty);
}
uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t* self) {
return self->duty_cycle;
}
void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t* self, uint32_t frequency) {
if (frequency == 0 || frequency > (common_hal_mcu_processor_get_frequency() / 2)) {
mp_raise_ValueError(translate("Invalid PWM frequency"));
}
target_slice_frequencies[self->slice] = frequency;
// For low frequencies use the divider to give us full resolution duty_cycle.
if (frequency < (common_hal_mcu_processor_get_frequency() / (1 << 16))) {
// Compute the divisor. It's an 8 bit integer and 4 bit fraction. Therefore,
// we compute everything * 16 for the fractional part.
// This is 1 << 12 because 4 bits are the * 16.
uint64_t frequency16 = ((uint64_t) clock_get_hz(clk_sys)) / (1 << 12);
uint64_t div16 = frequency16 / frequency;
// Round the divisor to try and get closest to the target frequency. We could
// also always round up and use TOP to get us closer. We may not need that though.
if (frequency16 % frequency >= frequency / 2) {
div16 += 1;
}
if (div16 >= (1 << 12)) {
div16 = (1 << 12) - 1;
}
self->actual_frequency = frequency16 / div16;
self->top = 1 << 16;
pwm_set_clkdiv_int_frac(self->slice, div16 / 16, div16 % 16);
pwm_set_wrap(self->slice, self->top - 1);
} else {
uint32_t top = common_hal_mcu_processor_get_frequency() / frequency;
self->actual_frequency = common_hal_mcu_processor_get_frequency() / top;
self->top = top;
pwm_set_clkdiv_int_frac(self->slice, 1, 0);
pwm_set_wrap(self->slice, self->top - 1);
}
common_hal_pwmio_pwmout_set_duty_cycle(self, self->duty_cycle);
}
uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t* self) {
return self->actual_frequency;
}
bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t* self) {
return self->variable_frequency;
}