731f359292
py/mphal.h contains declarations for generic mp_hal_XXX functions, such as stdio and delay/ticks, which ports should provide definitions for. A port will also provide mphalport.h with further HAL declarations.
359 lines
13 KiB
C
359 lines
13 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <mk20dx128.h>
|
|
#include "Arduino.h"
|
|
|
|
#include "py/obj.h"
|
|
#include "py/gc.h"
|
|
#include "py/mphal.h"
|
|
|
|
#include "gccollect.h"
|
|
#include "irq.h"
|
|
#include "systick.h"
|
|
#include "pyexec.h"
|
|
#include "led.h"
|
|
#include "pin.h"
|
|
#include "timer.h"
|
|
#include "extint.h"
|
|
#include "usrsw.h"
|
|
#include "rng.h"
|
|
//#include "rtc.h"
|
|
//#include "i2c.h"
|
|
//#include "spi.h"
|
|
#include "uart.h"
|
|
#include "adc.h"
|
|
#include "storage.h"
|
|
#include "sdcard.h"
|
|
#include "accel.h"
|
|
#include "servo.h"
|
|
#include "dac.h"
|
|
#include "usb.h"
|
|
#include "portmodules.h"
|
|
|
|
/// \module pyb - functions related to the pyboard
|
|
///
|
|
/// The `pyb` module contains specific functions related to the pyboard.
|
|
|
|
/// \function bootloader()
|
|
/// Activate the bootloader without BOOT* pins.
|
|
STATIC mp_obj_t pyb_bootloader(void) {
|
|
printf("bootloader command not current supported\n");
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
|
|
|
|
/// \function info([dump_alloc_table])
|
|
/// Print out lots of information about the board.
|
|
STATIC mp_obj_t pyb_info(uint n_args, const mp_obj_t *args) {
|
|
// get and print unique id; 96 bits
|
|
{
|
|
byte *id = (byte*)0x40048058;
|
|
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
|
|
}
|
|
|
|
// get and print clock speeds
|
|
printf("CPU=%u\nBUS=%u\nMEM=%u\n", F_CPU, F_BUS, F_MEM);
|
|
|
|
// to print info about memory
|
|
{
|
|
printf("_etext=%p\n", &_etext);
|
|
printf("_sidata=%p\n", &_sidata);
|
|
printf("_sdata=%p\n", &_sdata);
|
|
printf("_edata=%p\n", &_edata);
|
|
printf("_sbss=%p\n", &_sbss);
|
|
printf("_ebss=%p\n", &_ebss);
|
|
printf("_estack=%p\n", &_estack);
|
|
printf("_ram_start=%p\n", &_ram_start);
|
|
printf("_heap_start=%p\n", &_heap_start);
|
|
printf("_heap_end=%p\n", &_heap_end);
|
|
printf("_ram_end=%p\n", &_ram_end);
|
|
}
|
|
|
|
// qstr info
|
|
{
|
|
uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
|
|
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
|
|
printf("qstr:\n n_pool=%u\n n_qstr=%u\n n_str_data_bytes=%u\n n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
|
|
}
|
|
|
|
// GC info
|
|
{
|
|
gc_info_t info;
|
|
gc_info(&info);
|
|
printf("GC:\n");
|
|
printf(" " UINT_FMT " total\n", info.total);
|
|
printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
|
|
printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
|
|
}
|
|
|
|
if (n_args == 1) {
|
|
// arg given means dump gc allocation table
|
|
gc_dump_alloc_table();
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
|
|
|
|
/// \function unique_id()
|
|
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
|
|
STATIC mp_obj_t pyb_unique_id(void) {
|
|
byte *id = (byte*)0x40048058;
|
|
return mp_obj_new_bytes(id, 12);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);
|
|
|
|
/// \function freq()
|
|
/// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).
|
|
// TODO should also be able to set frequency via this function
|
|
STATIC mp_obj_t pyb_freq(void) {
|
|
mp_obj_t tuple[3] = {
|
|
mp_obj_new_int(F_CPU),
|
|
mp_obj_new_int(F_BUS),
|
|
mp_obj_new_int(F_MEM),
|
|
};
|
|
return mp_obj_new_tuple(3, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_freq_obj, pyb_freq);
|
|
|
|
/// \function sync()
|
|
/// Sync all file systems.
|
|
STATIC mp_obj_t pyb_sync(void) {
|
|
printf("sync not currently implemented\n");
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);
|
|
|
|
/// \function millis()
|
|
/// Returns the number of milliseconds since the board was last reset.
|
|
///
|
|
/// The result is always a micropython smallint (31-bit signed number), so
|
|
/// after 2^30 milliseconds (about 12.4 days) this will start to return
|
|
/// negative numbers.
|
|
STATIC mp_obj_t pyb_millis(void) {
|
|
// We want to "cast" the 32 bit unsigned into a small-int. This means
|
|
// copying the MSB down 1 bit (extending the sign down), which is
|
|
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
|
|
return MP_OBJ_NEW_SMALL_INT(mp_hal_ticks_ms());
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);
|
|
|
|
/// \function elapsed_millis(start)
|
|
/// Returns the number of milliseconds which have elapsed since `start`.
|
|
///
|
|
/// This function takes care of counter wrap, and always returns a positive
|
|
/// number. This means it can be used to measure periods upto about 12.4 days.
|
|
///
|
|
/// Example:
|
|
/// start = pyb.millis()
|
|
/// while pyb.elapsed_millis(start) < 1000:
|
|
/// # Perform some operation
|
|
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
|
|
uint32_t startMillis = mp_obj_get_int(start);
|
|
uint32_t currMillis = mp_hal_ticks_ms();
|
|
return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);
|
|
|
|
/// \function micros()
|
|
/// Returns the number of microseconds since the board was last reset.
|
|
///
|
|
/// The result is always a micropython smallint (31-bit signed number), so
|
|
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
|
|
/// negative numbers.
|
|
STATIC mp_obj_t pyb_micros(void) {
|
|
// We want to "cast" the 32 bit unsigned into a small-int. This means
|
|
// copying the MSB down 1 bit (extending the sign down), which is
|
|
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
|
|
return MP_OBJ_NEW_SMALL_INT(micros());
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);
|
|
|
|
/// \function elapsed_micros(start)
|
|
/// Returns the number of microseconds which have elapsed since `start`.
|
|
///
|
|
/// This function takes care of counter wrap, and always returns a positive
|
|
/// number. This means it can be used to measure periods upto about 17.8 minutes.
|
|
///
|
|
/// Example:
|
|
/// start = pyb.micros()
|
|
/// while pyb.elapsed_micros(start) < 1000:
|
|
/// # Perform some operation
|
|
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
|
|
uint32_t startMicros = mp_obj_get_int(start);
|
|
uint32_t currMicros = micros();
|
|
return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);
|
|
|
|
/// \function delay(ms)
|
|
/// Delay for the given number of milliseconds.
|
|
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
|
|
mp_int_t ms = mp_obj_get_int(ms_in);
|
|
if (ms >= 0) {
|
|
mp_hal_delay_ms(ms);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);
|
|
|
|
/// \function udelay(us)
|
|
/// Delay for the given number of microseconds.
|
|
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
|
|
mp_int_t usec = mp_obj_get_int(usec_in);
|
|
delayMicroseconds(usec);
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);
|
|
|
|
STATIC mp_obj_t pyb_stop(void) {
|
|
printf("stop not currently implemented\n");
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);
|
|
|
|
STATIC mp_obj_t pyb_standby(void) {
|
|
printf("standby not currently implemented\n");
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);
|
|
|
|
/// \function have_cdc()
|
|
/// Return True if USB is connected as a serial device, False otherwise.
|
|
STATIC mp_obj_t pyb_have_cdc(void ) {
|
|
return mp_obj_new_bool(usb_vcp_is_connected());
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);
|
|
|
|
/// \function hid((buttons, x, y, z))
|
|
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
|
|
/// signal a HID mouse-motion event.
|
|
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
|
|
#if 1
|
|
printf("hid_send_report not currently implemented\n");
|
|
#else
|
|
mp_obj_t *items;
|
|
mp_obj_get_array_fixed_n(arg, 4, &items);
|
|
uint8_t data[4];
|
|
data[0] = mp_obj_get_int(items[0]);
|
|
data[1] = mp_obj_get_int(items[1]);
|
|
data[2] = mp_obj_get_int(items[2]);
|
|
data[3] = mp_obj_get_int(items[3]);
|
|
usb_hid_send_report(data);
|
|
#endif
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
|
|
|
|
MP_DECLARE_CONST_FUN_OBJ(pyb_source_dir_obj); // defined in main.c
|
|
MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
|
|
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
|
|
|
|
STATIC const mp_map_elem_t pyb_module_globals_table[] = {
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_source_dir), (mp_obj_t)&pyb_source_dir_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },
|
|
|
|
//#if MICROPY_HW_ENABLE_RNG
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
|
|
//#endif
|
|
|
|
//#if MICROPY_HW_ENABLE_RTC
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
|
|
//#endif
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },
|
|
|
|
#if MICROPY_HW_ENABLE_SERVO
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
|
|
#endif
|
|
|
|
//#if MICROPY_HW_HAS_SDCARD
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
|
|
//#endif
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
|
|
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
|
|
|
|
//#if MICROPY_HW_ENABLE_DAC
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
|
|
//#endif
|
|
|
|
//#if MICROPY_HW_HAS_MMA7660
|
|
// { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
|
|
//#endif
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
|
|
|
|
const mp_obj_module_t pyb_module = {
|
|
.base = { &mp_type_module },
|
|
.name = MP_QSTR_pyb,
|
|
.globals = (mp_obj_dict_t*)&pyb_module_globals,
|
|
};
|