circuitpython/shared-bindings/busio/SPI.c

503 lines
21 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file contains all of the Python API definitions for the
// busio.SPI class.
#include <string.h>
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/busio/SPI.h"
#include "shared-bindings/util.h"
#include "shared/runtime/buffer_helper.h"
#include "shared/runtime/context_manager_helpers.h"
#include "py/binary.h"
#include "py/mperrno.h"
#include "py/objproperty.h"
#include "py/runtime.h"
//| class SPI:
//| """A 3-4 wire serial protocol
//|
//| SPI is a serial protocol that has exclusive pins for data in and out of the
//| main device. It is typically faster than :py:class:`~bitbangio.I2C` because a
//| separate pin is used to select a device rather than a transmitted
//| address. This class only manages three of the four SPI lines: `!clock`,
//| `!MOSI`, `!MISO`. Its up to the client to manage the appropriate
//| select line, often abbreviated `!CS` or `!SS`. (This is common because
//| multiple secondaries can share the `!clock`, `!MOSI` and `!MISO` lines
//| and therefore the hardware.)
//|
//| .. raw:: html
//|
//| <p>
//| <details>
//| <summary>Available on these boards</summary>
//| <ul>
//| {% for board in support_matrix_reverse["busio.SPI"] %}
//| <li> {{ board }}
//| {% endfor %}
//| </ul>
//| </details>
//| </p>
//|
//| """
//|
//| def __init__(
//| self,
//| clock: microcontroller.Pin,
//| MOSI: Optional[microcontroller.Pin] = None,
//| MISO: Optional[microcontroller.Pin] = None,
//| half_duplex: bool = False,
//| ) -> None:
//| """Construct an SPI object on the given pins.
//|
//| .. note:: The SPI peripherals allocated in order of desirability, if possible,
//| such as highest speed and not shared use first. For instance, on the nRF52840,
//| there is a single 32MHz SPI peripheral, and multiple 8MHz peripherals,
//| some of which may also be used for I2C. The 32MHz SPI peripheral is returned
//| first, then the exclusive 8MHz SPI peripheral, and finally the shared 8MHz
//| peripherals.
//|
//| .. seealso:: Using this class directly requires careful lock management.
//| Instead, use :class:`~adafruit_bus_device.SPIDevice` to
//| manage locks.
//|
//| .. seealso:: Using this class to directly read registers requires manual
//| bit unpacking. Instead, use an existing driver or make one with
//| :ref:`Register <register-module-reference>` data descriptors.
//|
//| :param ~microcontroller.Pin clock: the pin to use for the clock.
//| :param ~microcontroller.Pin MOSI: the Main Out Selected In pin.
//| :param ~microcontroller.Pin MISO: the Main In Selected Out pin.
//| :param bool half_duplex: True when MOSI is used for bidirectional data. False when SPI is full-duplex or simplex.
//|
//| **Limitations:** ``half_duplex`` is available only on STM; other chips do not have the hardware support.
//| """
//| ...
// TODO(tannewt): Support LSB SPI.
STATIC mp_obj_t busio_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
#if CIRCUITPY_BUSIO_SPI
busio_spi_obj_t *self = mp_obj_malloc(busio_spi_obj_t, &busio_spi_type);
enum { ARG_clock, ARG_MOSI, ARG_MISO, ARG_half_duplex };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_clock, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_MOSI, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_MISO, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_half_duplex, MP_ARG_OBJ | MP_ARG_KW_ONLY, {.u_bool = false} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
const mcu_pin_obj_t *clock = validate_obj_is_free_pin(args[ARG_clock].u_obj, MP_QSTR_clock);
const mcu_pin_obj_t *mosi = validate_obj_is_free_pin_or_none(args[ARG_MOSI].u_obj, MP_QSTR_mosi);
const mcu_pin_obj_t *miso = validate_obj_is_free_pin_or_none(args[ARG_MISO].u_obj, MP_QSTR_miso);
if (!miso && !mosi) {
mp_raise_ValueError(translate("Must provide MISO or MOSI pin"));
}
common_hal_busio_spi_construct(self, clock, mosi, miso, args[ARG_half_duplex].u_bool);
return MP_OBJ_FROM_PTR(self);
#else
raise_ValueError_invalid_pins();
#endif // CIRCUITPY_BUSIO_SPI
}
#if CIRCUITPY_BUSIO_SPI
//| def deinit(self) -> None:
//| """Turn off the SPI bus."""
//| ...
STATIC mp_obj_t busio_spi_obj_deinit(mp_obj_t self_in) {
busio_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_busio_spi_deinit(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(busio_spi_deinit_obj, busio_spi_obj_deinit);
//| def __enter__(self) -> SPI:
//| """No-op used by Context Managers.
//| Provided by context manager helper."""
//| ...
//| def __exit__(self) -> None:
//| """Automatically deinitializes the hardware when exiting a context. See
//| :ref:`lifetime-and-contextmanagers` for more info."""
//| ...
STATIC mp_obj_t busio_spi_obj___exit__(size_t n_args, const mp_obj_t *args) {
(void)n_args;
common_hal_busio_spi_deinit(MP_OBJ_TO_PTR(args[0]));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(busio_spi_obj___exit___obj, 4, 4, busio_spi_obj___exit__);
STATIC void check_lock(busio_spi_obj_t *self) {
asm ("");
if (!common_hal_busio_spi_has_lock(self)) {
mp_raise_RuntimeError(translate("Function requires lock"));
}
}
STATIC void check_for_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self)) {
raise_deinited_error();
}
}
//| def configure(
//| self, *, baudrate: int = 100000, polarity: int = 0, phase: int = 0, bits: int = 8
//| ) -> None:
//| """Configures the SPI bus. The SPI object must be locked.
//|
//| :param int baudrate: the desired clock rate in Hertz. The actual clock rate may be higher or lower
//| due to the granularity of available clock settings.
//| Check the `frequency` attribute for the actual clock rate.
//| :param int polarity: the base state of the clock line (0 or 1)
//| :param int phase: the edge of the clock that data is captured. First (0)
//| or second (1). Rising or falling depends on clock polarity.
//| :param int bits: the number of bits per word
//|
//| .. note:: On the SAMD21, it is possible to set the baudrate to 24 MHz, but that
//| speed is not guaranteed to work. 12 MHz is the next available lower speed, and is
//| within spec for the SAMD21.
//|
//| .. note:: On the nRF52840, these baudrates are available: 125kHz, 250kHz, 1MHz, 2MHz, 4MHz,
//| and 8MHz.
//| If you pick a a baudrate other than one of these, the nearest lower
//| baudrate will be chosen, with a minimum of 125kHz.
//| Two SPI objects may be created, except on the Circuit Playground Bluefruit,
//| which allows only one (to allow for an additional I2C object)."""
//| ...
STATIC mp_obj_t busio_spi_configure(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 100000} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
};
busio_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
check_for_deinit(self);
check_lock(self);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint8_t polarity = (uint8_t)mp_arg_validate_int_range(args[ARG_polarity].u_int, 0, 1, MP_QSTR_polarity);
uint8_t phase = (uint8_t)mp_arg_validate_int_range(args[ARG_phase].u_int, 0, 1, MP_QSTR_phase);
uint8_t bits = (uint8_t)mp_arg_validate_int_range(args[ARG_bits].u_int, 8, 9, MP_QSTR_bits);
if (!common_hal_busio_spi_configure(self, args[ARG_baudrate].u_int,
polarity, phase, bits)) {
mp_raise_OSError(MP_EIO);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(busio_spi_configure_obj, 1, busio_spi_configure);
//| def try_lock(self) -> bool:
//| """Attempts to grab the SPI lock. Returns True on success.
//|
//| :return: True when lock has been grabbed
//| :rtype: bool"""
//| ...
STATIC mp_obj_t busio_spi_obj_try_lock(mp_obj_t self_in) {
busio_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_bool(common_hal_busio_spi_try_lock(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(busio_spi_try_lock_obj, busio_spi_obj_try_lock);
//| def unlock(self) -> None:
//| """Releases the SPI lock."""
//| ...
STATIC mp_obj_t busio_spi_obj_unlock(mp_obj_t self_in) {
busio_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
common_hal_busio_spi_unlock(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(busio_spi_unlock_obj, busio_spi_obj_unlock);
//| import sys
//| def write(self, buffer: ReadableBuffer, *, start: int = 0, end: int = sys.maxsize) -> None:
//| """Write the data contained in ``buffer``. The SPI object must be locked.
//| If the buffer is empty, nothing happens.
//|
//| If ``start`` or ``end`` is provided, then the buffer will be sliced
//| as if ``buffer[start:end]`` were passed, but without copying the data.
//| The number of bytes written will be the length of ``buffer[start:end]``.
//|
//| :param ReadableBuffer buffer: write out bytes from this buffer
//| :param int start: beginning of buffer slice
//| :param int end: end of buffer slice; if not specified, use ``len(buffer)``
//| """
//| ...
STATIC mp_obj_t busio_spi_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_buffer, ARG_start, ARG_end };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
};
busio_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
check_for_deinit(self);
check_lock(self);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_READ);
// Compute bounds in terms of elements, not bytes.
int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL);
int32_t start = args[ARG_start].u_int;
size_t length = bufinfo.len / stride_in_bytes;
normalize_buffer_bounds(&start, args[ARG_end].u_int, &length);
// Treat start and length in terms of bytes from now on.
start *= stride_in_bytes;
length *= stride_in_bytes;
if (length == 0) {
return mp_const_none;
}
bool ok = common_hal_busio_spi_write(self, ((uint8_t *)bufinfo.buf) + start, length);
if (!ok) {
mp_raise_OSError(MP_EIO);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(busio_spi_write_obj, 1, busio_spi_write);
//| import sys
//| def readinto(
//| self,
//| buffer: WriteableBuffer,
//| *,
//| start: int = 0,
//| end: int = sys.maxsize,
//| write_value: int = 0
//| ) -> None:
//| """Read into ``buffer`` while writing ``write_value`` for each byte read.
//| The SPI object must be locked.
//| If the number of bytes to read is 0, nothing happens.
//|
//| If ``start`` or ``end`` is provided, then the buffer will be sliced
//| as if ``buffer[start:end]`` were passed.
//| The number of bytes read will be the length of ``buffer[start:end]``.
//|
//| :param WriteableBuffer buffer: read bytes into this buffer
//| :param int start: beginning of buffer slice
//| :param int end: end of buffer slice; if not specified, it will be the equivalent value
//| of ``len(buffer)`` and for any value provided it will take the value of
//| ``min(end, len(buffer))``
//| :param int write_value: value to write while reading
//| """
//| ...
STATIC mp_obj_t busio_spi_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_buffer, ARG_start, ARG_end, ARG_write_value };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
{ MP_QSTR_write_value, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
busio_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
check_for_deinit(self);
check_lock(self);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_WRITE);
// Compute bounds in terms of elements, not bytes.
int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL);
int32_t start = args[ARG_start].u_int;
size_t length = bufinfo.len / stride_in_bytes;
normalize_buffer_bounds(&start, args[ARG_end].u_int, &length);
// Treat start and length in terms of bytes from now on.
start *= stride_in_bytes;
length *= stride_in_bytes;
if (length == 0) {
return mp_const_none;
}
bool ok = common_hal_busio_spi_read(self, ((uint8_t *)bufinfo.buf) + start, length, args[ARG_write_value].u_int);
if (!ok) {
mp_raise_OSError(MP_EIO);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(busio_spi_readinto_obj, 1, busio_spi_readinto);
//| import sys
//| def write_readinto(
//| self,
//| out_buffer: ReadableBuffer,
//| in_buffer: WriteableBuffer,
//| *,
//| out_start: int = 0,
//| out_end: int = sys.maxsize,
//| in_start: int = 0,
//| in_end: int = sys.maxsize
//| ) -> None:
//| """Write out the data in ``out_buffer`` while simultaneously reading data into ``in_buffer``.
//| The SPI object must be locked.
//|
//| If ``out_start`` or ``out_end`` is provided, then the buffer will be sliced
//| as if ``out_buffer[out_start:out_end]`` were passed, but without copying the data.
//| The number of bytes written will be the length of ``out_buffer[out_start:out_end]``.
//|
//| If ``in_start`` or ``in_end`` is provided, then the input buffer will be sliced
//| as if ``in_buffer[in_start:in_end]`` were passed,
//| The number of bytes read will be the length of ``out_buffer[in_start:in_end]``.
//|
//| The lengths of the slices defined by ``out_buffer[out_start:out_end]``
//| and ``in_buffer[in_start:in_end]`` must be equal.
//| If buffer slice lengths are both 0, nothing happens.
//|
//| :param ReadableBuffer out_buffer: write out bytes from this buffer
//| :param WriteableBuffer in_buffer: read bytes into this buffer
//| :param int out_start: beginning of ``out_buffer`` slice
//| :param int out_end: end of ``out_buffer`` slice; if not specified, use ``len(out_buffer)``
//| :param int in_start: beginning of ``in_buffer`` slice
//| :param int in_end: end of ``in_buffer slice``; if not specified, use ``len(in_buffer)``
//| """
//| ...
STATIC mp_obj_t busio_spi_write_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_out_buffer, ARG_in_buffer, ARG_out_start, ARG_out_end, ARG_in_start, ARG_in_end };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_out_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_in_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_out_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_out_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
{ MP_QSTR_in_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_in_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
};
busio_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
check_for_deinit(self);
check_lock(self);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t buf_out_info;
mp_get_buffer_raise(args[ARG_out_buffer].u_obj, &buf_out_info, MP_BUFFER_READ);
int out_stride_in_bytes = mp_binary_get_size('@', buf_out_info.typecode, NULL);
int32_t out_start = args[ARG_out_start].u_int;
size_t out_length = buf_out_info.len / out_stride_in_bytes;
normalize_buffer_bounds(&out_start, args[ARG_out_end].u_int, &out_length);
mp_buffer_info_t buf_in_info;
mp_get_buffer_raise(args[ARG_in_buffer].u_obj, &buf_in_info, MP_BUFFER_WRITE);
int in_stride_in_bytes = mp_binary_get_size('@', buf_in_info.typecode, NULL);
int32_t in_start = args[ARG_in_start].u_int;
size_t in_length = buf_in_info.len / in_stride_in_bytes;
normalize_buffer_bounds(&in_start, args[ARG_in_end].u_int, &in_length);
// Treat start and length in terms of bytes from now on.
out_start *= out_stride_in_bytes;
out_length *= out_stride_in_bytes;
in_start *= in_stride_in_bytes;
in_length *= in_stride_in_bytes;
if (out_length != in_length) {
mp_raise_ValueError(translate("buffer slices must be of equal length"));
}
if (out_length == 0) {
return mp_const_none;
}
bool ok = common_hal_busio_spi_transfer(self,
((uint8_t *)buf_out_info.buf) + out_start,
((uint8_t *)buf_in_info.buf) + in_start,
out_length);
if (!ok) {
mp_raise_OSError(MP_EIO);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(busio_spi_write_readinto_obj, 1, busio_spi_write_readinto);
//| frequency: int
//| """The actual SPI bus frequency. This may not match the frequency requested
//| due to internal limitations."""
//|
STATIC mp_obj_t busio_spi_obj_get_frequency(mp_obj_t self_in) {
busio_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return MP_OBJ_NEW_SMALL_INT(common_hal_busio_spi_get_frequency(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(busio_spi_get_frequency_obj, busio_spi_obj_get_frequency);
MP_PROPERTY_GETTER(busio_spi_frequency_obj,
(mp_obj_t)&busio_spi_get_frequency_obj);
#endif // CIRCUITPY_BUSIO_SPI
STATIC const mp_rom_map_elem_t busio_spi_locals_dict_table[] = {
#if CIRCUITPY_BUSIO_SPI
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&busio_spi_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) },
{ MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&busio_spi_obj___exit___obj) },
{ MP_ROM_QSTR(MP_QSTR_configure), MP_ROM_PTR(&busio_spi_configure_obj) },
{ MP_ROM_QSTR(MP_QSTR_try_lock), MP_ROM_PTR(&busio_spi_try_lock_obj) },
{ MP_ROM_QSTR(MP_QSTR_unlock), MP_ROM_PTR(&busio_spi_unlock_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&busio_spi_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&busio_spi_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&busio_spi_write_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&busio_spi_frequency_obj) }
#endif // CIRCUITPY_BUSIO_SPI
};
STATIC MP_DEFINE_CONST_DICT(busio_spi_locals_dict, busio_spi_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
busio_spi_type,
MP_QSTR_SPI,
MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS,
make_new, busio_spi_make_new,
locals_dict, &busio_spi_locals_dict
);
busio_spi_obj_t *validate_obj_is_spi_bus(mp_obj_t obj, qstr arg_name) {
return mp_arg_validate_type(obj, &busio_spi_type, arg_name);
}