circuitpython/py/builtinimport.c
Jim Mussared 525557738c py/builtinimport: Optimise sub-package loading.
This makes it so that sub-packages are resolved relative to their parent's
`__path__`, rather than re-resolving each parent's filesystem path.

The previous behavior was that `import foo.bar` would first re-search
`sys.path` for `foo`, then use the resulting path to find `bar`.

For already-loaded and u-prefixed modules, because we no longer need to
build the path from level to level, we no longer unnecessarily search
the filesystem. This should improve startup time.

Explicitly makes the resolving process clear:
 - Loaded modules are returned immediately without touching the filesystem.
 - Exact-match of builtins are also returned immediately.
 - Then the filesystem search happens.
 - If that fails, then the weak-link handling is applied.

This maintains the existing behavior: if a user writes `import time` they
will get time.py if it exits, otherwise the built-in utime. Whereas `import
utime` will always return the built-in.

This also fixes a regression from a7fa18c203
where we search the filesystem for built-ins. It is now only possible to
override u-prefixed builtins. This will remove a lot of filesystem stats
at startup, as micropython-specific modules (e.g. `pyb`) will no longer
attempt to look at the filesystem.

Added several improvements to the comments and some minor renaming and
refactoring to make it clearer how the import mechanism works. Overall
code size diff is +56 bytes on STM32.

This work was funded through GitHub Sponsors.

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2023-06-01 16:21:21 +10:00

669 lines
27 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2019 Damien P. George
* Copyright (c) 2014 Paul Sokolovsky
* Copyright (c) 2021 Jim Mussared
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/compile.h"
#include "py/objmodule.h"
#include "py/persistentcode.h"
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/frozenmod.h"
#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif
#if MICROPY_MODULE_WEAK_LINKS
STATIC qstr make_weak_link_name(vstr_t *buffer, qstr name) {
vstr_reset(buffer);
vstr_add_char(buffer, 'u');
vstr_add_str(buffer, qstr_str(name));
return qstr_from_strn(buffer->buf, buffer->len);
}
#endif
#if MICROPY_ENABLE_EXTERNAL_IMPORT
// Must be a string of one byte.
#define PATH_SEP_CHAR "/"
// Virtual sys.path entry that maps to the frozen modules.
#define MP_FROZEN_PATH_PREFIX ".frozen/"
// Wrapper for mp_import_stat (which is provided by the port, and typically
// uses mp_vfs_import_stat) to also search frozen modules. Given an exact
// path to a file or directory (e.g. "foo/bar", foo/bar.py" or "foo/bar.mpy"),
// will return whether the path is a file, directory, or doesn't exist.
STATIC mp_import_stat_t stat_path(const char *path) {
#if MICROPY_MODULE_FROZEN
// Only try and load as a frozen module if it starts with .frozen/.
const int frozen_path_prefix_len = strlen(MP_FROZEN_PATH_PREFIX);
if (strncmp(path, MP_FROZEN_PATH_PREFIX, frozen_path_prefix_len) == 0) {
// Just stat (which is the return value), don't get the data.
return mp_find_frozen_module(path + frozen_path_prefix_len, NULL, NULL);
}
#endif
return mp_import_stat(path);
}
// Stat a given filesystem path to a .py file. If the file does not exist,
// then attempt to stat the corresponding .mpy file, and update the path
// argument. This is the logic that makes .py files take precedent over .mpy
// files. This uses stat_path above, rather than mp_import_stat directly, so
// that the .frozen path prefix is handled.
STATIC mp_import_stat_t stat_file_py_or_mpy(vstr_t *path) {
mp_import_stat_t stat = stat_path(vstr_null_terminated_str(path));
if (stat == MP_IMPORT_STAT_FILE) {
return stat;
}
#if MICROPY_PERSISTENT_CODE_LOAD
// Didn't find .py -- try the .mpy instead by inserting an 'm' into the '.py'.
// Note: There's no point doing this if it's a frozen path, but adding the check
// would be extra code, and no harm letting mp_find_frozen_module fail instead.
vstr_ins_byte(path, path->len - 2, 'm');
stat = stat_path(vstr_null_terminated_str(path));
if (stat == MP_IMPORT_STAT_FILE) {
return stat;
}
#endif
return MP_IMPORT_STAT_NO_EXIST;
}
// Given an import path (e.g. "foo/bar"), try and find "foo/bar" (a directory)
// or "foo/bar.(m)py" in either the filesystem or frozen modules. If the
// result is a file, the path argument will be updated to include the file
// extension.
STATIC mp_import_stat_t stat_module(vstr_t *path) {
mp_import_stat_t stat = stat_path(vstr_null_terminated_str(path));
DEBUG_printf("stat %s: %d\n", vstr_str(path), stat);
if (stat == MP_IMPORT_STAT_DIR) {
return stat;
}
// Not a directory, add .py and try as a file.
vstr_add_str(path, ".py");
return stat_file_py_or_mpy(path);
}
// Given a top-level module name, try and find it in each of the sys.path
// entries. Note: On success, the dest argument will be updated to the matching
// path (i.e. "<entry>/mod_name(.py)").
STATIC mp_import_stat_t stat_top_level(qstr mod_name, vstr_t *dest) {
DEBUG_printf("stat_top_level: '%s'\n", qstr_str(mod_name));
#if MICROPY_PY_SYS
size_t path_num;
mp_obj_t *path_items;
mp_obj_list_get(mp_sys_path, &path_num, &path_items);
// go through each sys.path entry, trying to import "<entry>/<mod_name>".
for (size_t i = 0; i < path_num; i++) {
vstr_reset(dest);
size_t p_len;
const char *p = mp_obj_str_get_data(path_items[i], &p_len);
if (p_len > 0) {
// Add the path separator (unless the entry is "", i.e. cwd).
vstr_add_strn(dest, p, p_len);
vstr_add_char(dest, PATH_SEP_CHAR[0]);
}
vstr_add_str(dest, qstr_str(mod_name));
mp_import_stat_t stat = stat_module(dest);
if (stat != MP_IMPORT_STAT_NO_EXIST) {
return stat;
}
}
// sys.path was empty or no matches, do not search the filesystem or
// frozen code.
return MP_IMPORT_STAT_NO_EXIST;
#else
// mp_sys_path is not enabled, so just stat the given path directly.
vstr_add_str(dest, qstr_str(mod_name));
return stat_module(dest);
#endif
}
#if MICROPY_MODULE_FROZEN_STR || MICROPY_ENABLE_COMPILER
STATIC void do_load_from_lexer(mp_module_context_t *context, mp_lexer_t *lex) {
#if MICROPY_PY___FILE__
qstr source_name = lex->source_name;
mp_store_attr(MP_OBJ_FROM_PTR(&context->module), MP_QSTR___file__, MP_OBJ_NEW_QSTR(source_name));
#endif
// parse, compile and execute the module in its context
mp_obj_dict_t *mod_globals = context->module.globals;
mp_parse_compile_execute(lex, MP_PARSE_FILE_INPUT, mod_globals, mod_globals);
}
#endif
#if (MICROPY_HAS_FILE_READER && MICROPY_PERSISTENT_CODE_LOAD) || MICROPY_MODULE_FROZEN_MPY
STATIC void do_execute_raw_code(const mp_module_context_t *context, const mp_raw_code_t *rc, const char *source_name) {
(void)source_name;
#if MICROPY_PY___FILE__
mp_store_attr(MP_OBJ_FROM_PTR(&context->module), MP_QSTR___file__, MP_OBJ_NEW_QSTR(qstr_from_str(source_name)));
#endif
// execute the module in its context
mp_obj_dict_t *mod_globals = context->module.globals;
// save context
mp_obj_dict_t *volatile old_globals = mp_globals_get();
mp_obj_dict_t *volatile old_locals = mp_locals_get();
// set new context
mp_globals_set(mod_globals);
mp_locals_set(mod_globals);
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_t module_fun = mp_make_function_from_raw_code(rc, context, NULL);
mp_call_function_0(module_fun);
// finish nlr block, restore context
nlr_pop();
mp_globals_set(old_globals);
mp_locals_set(old_locals);
} else {
// exception; restore context and re-raise same exception
mp_globals_set(old_globals);
mp_locals_set(old_locals);
nlr_jump(nlr.ret_val);
}
}
#endif
STATIC void do_load(mp_module_context_t *module_obj, vstr_t *file) {
#if MICROPY_MODULE_FROZEN || MICROPY_ENABLE_COMPILER || (MICROPY_PERSISTENT_CODE_LOAD && MICROPY_HAS_FILE_READER)
const char *file_str = vstr_null_terminated_str(file);
#endif
// If we support frozen modules (either as str or mpy) then try to find the
// requested filename in the list of frozen module filenames.
#if MICROPY_MODULE_FROZEN
void *modref;
int frozen_type;
const int frozen_path_prefix_len = strlen(MP_FROZEN_PATH_PREFIX);
if (strncmp(file_str, MP_FROZEN_PATH_PREFIX, frozen_path_prefix_len) == 0) {
mp_find_frozen_module(file_str + frozen_path_prefix_len, &frozen_type, &modref);
// If we support frozen str modules and the compiler is enabled, and we
// found the filename in the list of frozen files, then load and execute it.
#if MICROPY_MODULE_FROZEN_STR
if (frozen_type == MP_FROZEN_STR) {
do_load_from_lexer(module_obj, modref);
return;
}
#endif
// If we support frozen mpy modules and we found a corresponding file (and
// its data) in the list of frozen files, execute it.
#if MICROPY_MODULE_FROZEN_MPY
if (frozen_type == MP_FROZEN_MPY) {
const mp_frozen_module_t *frozen = modref;
module_obj->constants = frozen->constants;
do_execute_raw_code(module_obj, frozen->rc, file_str + frozen_path_prefix_len);
return;
}
#endif
}
#endif // MICROPY_MODULE_FROZEN
// If we support loading .mpy files then check if the file extension is of
// the correct format and, if so, load and execute the file.
#if MICROPY_HAS_FILE_READER && MICROPY_PERSISTENT_CODE_LOAD
if (file_str[file->len - 3] == 'm') {
mp_compiled_module_t cm;
cm.context = module_obj;
mp_raw_code_load_file(file_str, &cm);
do_execute_raw_code(cm.context, cm.rc, file_str);
return;
}
#endif
// If we can compile scripts then load the file and compile and execute it.
#if MICROPY_ENABLE_COMPILER
{
mp_lexer_t *lex = mp_lexer_new_from_file(file_str);
do_load_from_lexer(module_obj, lex);
return;
}
#else
// If we get here then the file was not frozen and we can't compile scripts.
mp_raise_msg(&mp_type_ImportError, MP_ERROR_TEXT("script compilation not supported"));
#endif
}
// Convert a relative (to the current module) import, going up "level" levels,
// into an absolute import.
STATIC void evaluate_relative_import(mp_int_t level, const char **module_name, size_t *module_name_len) {
// What we want to do here is to take the name of the current module,
// remove <level> trailing components, and concatenate the passed-in
// module name.
// For example, level=3, module_name="foo.bar", __name__="a.b.c.d" --> "a.foo.bar"
// "Relative imports use a module's __name__ attribute to determine that
// module's position in the package hierarchy."
// http://legacy.python.org/dev/peps/pep-0328/#relative-imports-and-name
mp_obj_t current_module_name_obj = mp_obj_dict_get(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(MP_QSTR___name__));
assert(current_module_name_obj != MP_OBJ_NULL);
#if MICROPY_MODULE_OVERRIDE_MAIN_IMPORT && MICROPY_CPYTHON_COMPAT
if (MP_OBJ_QSTR_VALUE(current_module_name_obj) == MP_QSTR___main__) {
// This is a module loaded by -m command-line switch (e.g. unix port),
// and so its __name__ has been set to "__main__". Get its real name
// that we stored during import in the __main__ attribute.
current_module_name_obj = mp_obj_dict_get(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
}
#endif
// If we have a __path__ in the globals dict, then we're a package.
bool is_pkg = mp_map_lookup(&mp_globals_get()->map, MP_OBJ_NEW_QSTR(MP_QSTR___path__), MP_MAP_LOOKUP);
#if DEBUG_PRINT
DEBUG_printf("Current module/package: ");
mp_obj_print_helper(MICROPY_DEBUG_PRINTER, current_module_name_obj, PRINT_REPR);
DEBUG_printf(", is_package: %d", is_pkg);
DEBUG_printf("\n");
#endif
size_t current_module_name_len;
const char *current_module_name = mp_obj_str_get_data(current_module_name_obj, &current_module_name_len);
const char *p = current_module_name + current_module_name_len;
if (is_pkg) {
// If we're evaluating relative to a package, then take off one fewer
// level (i.e. the relative search starts inside the package, rather
// than as a sibling of the package).
--level;
}
// Walk back 'level' dots (or run out of path).
while (level && p > current_module_name) {
if (*--p == '.') {
--level;
}
}
// We must have some component left over to import from.
if (p == current_module_name) {
mp_raise_msg(&mp_type_ImportError, MP_ERROR_TEXT("can't perform relative import"));
}
// New length is len("<chopped path>.<module_name>"). Note: might be one byte
// more than we need if module_name is empty (for the extra . we will
// append).
uint new_module_name_len = (size_t)(p - current_module_name) + 1 + *module_name_len;
char *new_mod = mp_local_alloc(new_module_name_len);
memcpy(new_mod, current_module_name, p - current_module_name);
// Only append ".<module_name>" if there was one).
if (*module_name_len != 0) {
new_mod[p - current_module_name] = '.';
memcpy(new_mod + (p - current_module_name) + 1, *module_name, *module_name_len);
} else {
--new_module_name_len;
}
// Copy into a QSTR.
qstr new_mod_q = qstr_from_strn(new_mod, new_module_name_len);
mp_local_free(new_mod);
DEBUG_printf("Resolved base name for relative import: '%s'\n", qstr_str(new_mod_q));
*module_name = qstr_str(new_mod_q);
*module_name_len = new_module_name_len;
}
// Load a module at the specified absolute path, possibly as a submodule of the given outer module.
// full_mod_name: The full absolute path up to this level (e.g. "foo.bar.baz").
// level_mod_name: The final component of the path (e.g. "baz").
// outer_module_obj: The parent module (we need to store this module as an
// attribute on it) (or MP_OBJ_NULL for top-level).
// override_main: Whether to set the __name__ to "__main__" (and use __main__
// for the actual path).
STATIC mp_obj_t process_import_at_level(qstr full_mod_name, qstr level_mod_name, mp_obj_t outer_module_obj, bool override_main) {
// Immediately return if the module at this level is already loaded.
mp_map_elem_t *elem;
#if MICROPY_PY_SYS
// If sys.path is empty, the intention is to force using a built-in. This
// means we should also ignore any loaded modules with the same name
// which may have come from the filesystem.
size_t path_num;
mp_obj_t *path_items;
mp_obj_list_get(mp_sys_path, &path_num, &path_items);
if (path_num)
#endif
{
elem = mp_map_lookup(&MP_STATE_VM(mp_loaded_modules_dict).map, MP_OBJ_NEW_QSTR(full_mod_name), MP_MAP_LOOKUP);
if (elem) {
return elem->value;
}
}
VSTR_FIXED(path, MICROPY_ALLOC_PATH_MAX);
mp_import_stat_t stat = MP_IMPORT_STAT_NO_EXIST;
mp_obj_t module_obj;
if (outer_module_obj == MP_OBJ_NULL) {
DEBUG_printf("Searching for top-level module\n");
// An exact match of a built-in will always bypass the filesystem.
// Note that CPython-compatible built-ins are named e.g. utime, so this
// means that an exact match is only for `import utime`, so `import
// time` will search the filesystem and failing that hit the weak
// link handling below. Whereas micropython-specific built-ins like
// `micropython`, `pyb`, `network`, etc will match exactly and cannot
// be overridden by the filesystem.
module_obj = mp_module_get_builtin(level_mod_name);
if (module_obj != MP_OBJ_NULL) {
return module_obj;
}
#if MICROPY_PY_SYS
// Never allow sys to be overridden from the filesystem. If weak links
// are disabled, then this also provides a default weak link so that
// `import sys` is treated like `import usys` (and therefore bypasses
// the filesystem).
if (level_mod_name == MP_QSTR_sys) {
return MP_OBJ_FROM_PTR(&mp_module_sys);
}
#endif
// First module in the dotted-name; search for a directory or file
// relative to all the locations in sys.path.
stat = stat_top_level(level_mod_name, &path);
#if MICROPY_MODULE_WEAK_LINKS
if (stat == MP_IMPORT_STAT_NO_EXIST) {
// No match on the filesystem. (And not a built-in either).
// If "foo" was requested, then try "ufoo" as a built-in. This
// allows `import time` to use built-in `utime`, unless `time`
// exists on the filesystem. This feature was formerly known
// as "weak links".
qstr umodule_name = make_weak_link_name(&path, level_mod_name);
module_obj = mp_module_get_builtin(umodule_name);
if (module_obj != MP_OBJ_NULL) {
return module_obj;
}
}
#endif
} else {
DEBUG_printf("Searching for sub-module\n");
// If the outer module is a package, it will have __path__ set.
// We can use that as the path to search inside.
mp_obj_t dest[2];
mp_load_method_maybe(outer_module_obj, MP_QSTR___path__, dest);
if (dest[0] != MP_OBJ_NULL) {
// e.g. __path__ will be "<matched search path>/foo/bar"
vstr_add_str(&path, mp_obj_str_get_str(dest[0]));
// Add the level module name to the path to get "<matched search path>/foo/bar/baz".
vstr_add_char(&path, PATH_SEP_CHAR[0]);
vstr_add_str(&path, qstr_str(level_mod_name));
stat = stat_module(&path);
}
}
// Not already loaded, and not a built-in, so look at the stat result from the filesystem/frozen.
if (stat == MP_IMPORT_STAT_NO_EXIST) {
// Not found -- fail.
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_msg(&mp_type_ImportError, MP_ERROR_TEXT("module not found"));
#else
mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("no module named '%q'"), full_mod_name);
#endif
}
// Module was found on the filesystem/frozen, try and load it.
DEBUG_printf("Found path to load: %.*s\n", (int)vstr_len(&path), vstr_str(&path));
// Prepare for loading from the filesystem. Create a new shell module.
module_obj = mp_obj_new_module(full_mod_name);
#if MICROPY_MODULE_OVERRIDE_MAIN_IMPORT
// If this module is being loaded via -m on unix, then
// override __name__ to "__main__". Do this only for *modules*
// however - packages never have their names replaced, instead
// they're -m'ed using a special __main__ submodule in them. (This all
// apparently is done to not touch the package name itself, which is
// important for future imports).
if (override_main && stat != MP_IMPORT_STAT_DIR) {
mp_obj_module_t *o = MP_OBJ_TO_PTR(module_obj);
mp_obj_dict_store(MP_OBJ_FROM_PTR(o->globals), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
#if MICROPY_CPYTHON_COMPAT
// Store module as "__main__" in the dictionary of loaded modules (returned by sys.modules).
mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_loaded_modules_dict)), MP_OBJ_NEW_QSTR(MP_QSTR___main__), module_obj);
// Store real name in "__main__" attribute. Need this for
// resolving relative imports later. "__main__ was chosen
// semi-randonly, to reuse existing qstr's.
mp_obj_dict_store(MP_OBJ_FROM_PTR(o->globals), MP_OBJ_NEW_QSTR(MP_QSTR___main__), MP_OBJ_NEW_QSTR(full_mod_name));
#endif
}
#endif // MICROPY_MODULE_OVERRIDE_MAIN_IMPORT
if (stat == MP_IMPORT_STAT_DIR) {
// Directory (i.e. a package).
DEBUG_printf("%.*s is dir\n", (int)vstr_len(&path), vstr_str(&path));
// Store the __path__ attribute onto this module.
// https://docs.python.org/3/reference/import.html
// "Specifically, any module that contains a __path__ attribute is considered a package."
// This gets used later to locate any subpackages of this module.
mp_store_attr(module_obj, MP_QSTR___path__, mp_obj_new_str(vstr_str(&path), vstr_len(&path)));
size_t orig_path_len = path.len;
vstr_add_str(&path, PATH_SEP_CHAR "__init__.py");
// execute "path/__init__.py" (if available).
if (stat_file_py_or_mpy(&path) == MP_IMPORT_STAT_FILE) {
do_load(MP_OBJ_TO_PTR(module_obj), &path);
} else {
// No-op. Nothing to load.
// mp_warning("%s is imported as namespace package", vstr_str(&path));
}
// Remove /__init__.py suffix from path.
path.len = orig_path_len;
} else { // MP_IMPORT_STAT_FILE
// File -- execute "path.(m)py".
do_load(MP_OBJ_TO_PTR(module_obj), &path);
// Note: This should be the last component in the import path. If
// there are remaining components then in the next call to
// process_import_at_level will detect that it doesn't have
// a __path__ attribute, and not attempt to stat it.
}
if (outer_module_obj != MP_OBJ_NULL) {
// If it's a sub-module then make it available on the parent module.
mp_store_attr(outer_module_obj, level_mod_name, module_obj);
}
return module_obj;
}
mp_obj_t mp_builtin___import___default(size_t n_args, const mp_obj_t *args) {
#if DEBUG_PRINT
DEBUG_printf("__import__:\n");
for (size_t i = 0; i < n_args; i++) {
DEBUG_printf(" ");
mp_obj_print_helper(MICROPY_DEBUG_PRINTER, args[i], PRINT_REPR);
DEBUG_printf("\n");
}
#endif
// This is the import path, with any leading dots stripped.
// "import foo.bar" --> module_name="foo.bar"
// "from foo.bar import baz" --> module_name="foo.bar"
// "from . import foo" --> module_name=""
// "from ...foo.bar import baz" --> module_name="foo.bar"
mp_obj_t module_name_obj = args[0];
// These are the imported names.
// i.e. "from foo.bar import baz, zap" --> fromtuple=("baz", "zap",)
// Note: There's a special case on the Unix port, where this is set to mp_const_false which means that it's __main__.
mp_obj_t fromtuple = mp_const_none;
// Level is the number of leading dots in a relative import.
// i.e. "from . import foo" --> level=1
// i.e. "from ...foo.bar import baz" --> level=3
mp_int_t level = 0;
if (n_args >= 4) {
fromtuple = args[3];
if (n_args >= 5) {
level = MP_OBJ_SMALL_INT_VALUE(args[4]);
if (level < 0) {
mp_raise_ValueError(NULL);
}
}
}
size_t module_name_len;
const char *module_name = mp_obj_str_get_data(module_name_obj, &module_name_len);
if (level != 0) {
// Turn "foo.bar" with level=3 into "<current module 3 components>.foo.bar".
// Current module name is extracted from globals().__name__.
evaluate_relative_import(level, &module_name, &module_name_len);
// module_name is now an absolute module path.
}
if (module_name_len == 0) {
mp_raise_ValueError(NULL);
}
DEBUG_printf("Starting module search for '%s'\n", module_name);
mp_obj_t top_module_obj = MP_OBJ_NULL;
mp_obj_t outer_module_obj = MP_OBJ_NULL;
// Iterate the absolute path, finding the end of each component of the path.
// foo.bar.baz
// ^ ^ ^
size_t current_component_start = 0;
for (size_t i = 1; i <= module_name_len; i++) {
if (i == module_name_len || module_name[i] == '.') {
// The module name up to this depth (e.g. foo.bar.baz).
qstr full_mod_name = qstr_from_strn(module_name, i);
// The current level name (e.g. baz).
qstr level_mod_name = qstr_from_strn(module_name + current_component_start, i - current_component_start);
DEBUG_printf("Processing module: '%s' at level '%s'\n", qstr_str(full_mod_name), qstr_str(level_mod_name));
#if MICROPY_MODULE_OVERRIDE_MAIN_IMPORT
// On unix, if this is being loaded via -m (indicated by sentinel
// fromtuple=mp_const_false), then handle that if it's the final
// component.
bool override_main = (i == module_name_len && fromtuple == mp_const_false);
#else
bool override_main = false;
#endif
// Import this module.
mp_obj_t module_obj = process_import_at_level(full_mod_name, level_mod_name, outer_module_obj, override_main);
// Set this as the parent module, and remember the top-level module if it's the first.
outer_module_obj = module_obj;
if (top_module_obj == MP_OBJ_NULL) {
top_module_obj = module_obj;
}
current_component_start = i + 1;
}
}
if (fromtuple != mp_const_none) {
// If fromtuple is not empty, return leaf module
return outer_module_obj;
} else {
// Otherwise, we need to return top-level package
return top_module_obj;
}
}
#else // MICROPY_ENABLE_EXTERNAL_IMPORT
mp_obj_t mp_builtin___import___default(size_t n_args, const mp_obj_t *args) {
// Check that it's not a relative import.
if (n_args >= 5 && MP_OBJ_SMALL_INT_VALUE(args[4]) != 0) {
mp_raise_NotImplementedError(MP_ERROR_TEXT("relative import"));
}
// Check if the module is already loaded.
mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_loaded_modules_dict).map, args[0], MP_MAP_LOOKUP);
if (elem) {
return elem->value;
}
// Try the name directly as a built-in.
qstr module_name_qstr = mp_obj_str_get_qstr(args[0]);
mp_obj_t module_obj = mp_module_get_builtin(module_name_qstr);
if (module_obj != MP_OBJ_NULL) {
return module_obj;
}
#if MICROPY_MODULE_WEAK_LINKS
// Check if the u-prefixed name is a built-in.
VSTR_FIXED(umodule_path, MICROPY_ALLOC_PATH_MAX);
qstr umodule_name_qstr = make_weak_link_name(&umodule_path, module_name_qstr);
module_obj = mp_module_get_builtin(umodule_name_qstr);
if (module_obj != MP_OBJ_NULL) {
return module_obj;
}
#elif MICROPY_PY_SYS
// Special handling to make `import sys` work even if weak links aren't enabled.
if (module_name_qstr == MP_QSTR_sys) {
return MP_OBJ_FROM_PTR(&mp_module_sys);
}
#endif
// Couldn't find the module, so fail
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_msg(&mp_type_ImportError, MP_ERROR_TEXT("module not found"));
#else
mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("no module named '%q'"), module_name_qstr);
#endif
}
#endif // MICROPY_ENABLE_EXTERNAL_IMPORT
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_builtin___import___obj, 1, 5, mp_builtin___import__);