KurtE f102c15bb4
Update ports/mimxrt10xx/common-hal/pwmio/PWMOut.c
Co-authored-by: Dan Halbert <halbert@halwitz.org>
2022-04-22 09:15:40 -07:00

333 lines
12 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
* SPDX-FileCopyrightText: Copyright (c) 2016 Damien P. George
* Copyright (c) 2019 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "py/runtime.h"
#include "common-hal/pwmio/PWMOut.h"
#include "shared-bindings/pwmio/PWMOut.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "fsl_pwm.h"
#include "supervisor/shared/translate.h"
#include "periph.h"
// Debug print support set to zero to enable debug printing
#define ENABLE_DEBUG_PRINTING 0
static void config_periph_pin(const mcu_pwm_obj_t *periph) {
IOMUXC_SetPinMux(
periph->pin->mux_reg, periph->mux_mode,
periph->input_reg, periph->input_idx,
periph->pin->cfg_reg,
0);
IOMUXC_SetPinConfig(0, 0, 0, 0,
periph->pin->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_HYS(0)
| IOMUXC_SW_PAD_CTL_PAD_PUS(1)
| IOMUXC_SW_PAD_CTL_PAD_PUE(1)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(1)
| IOMUXC_SW_PAD_CTL_PAD_DSE(6)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
}
void common_hal_pwmio_pwmout_never_reset(pwmio_pwmout_obj_t *self) {
}
void common_hal_pwmio_pwmout_reset_ok(pwmio_pwmout_obj_t *self) {
}
void pwmout_reset(void) {
}
#define PWM_SRC_CLK_FREQ CLOCK_GetFreq(kCLOCK_IpgClk)
static int calculate_pulse_count(uint32_t frequency, uint8_t *prescaler) {
if (frequency > PWM_SRC_CLK_FREQ / 2) {
return 0;
}
for (int shift = 0; shift < 8; shift++) {
int pulse_count = PWM_SRC_CLK_FREQ / (1 << shift) / frequency;
if (pulse_count >= 65535) {
continue;
}
*prescaler = shift;
return pulse_count;
}
return 0;
}
// ==========================================================
// Debug code
// ==========================================================
#if ENABLE_DEBUG_PRINTING
#define DBGPrintf mp_printf
extern void debug_print_flexpwm_registers(PWM_Type *base);
void debug_print_flexpwm_registers(PWM_Type *base) {
mp_printf(&mp_plat_print,
"\t\tPWM OUTEN:%x MASK:%x SWCOUT:%x DTSRCSEL:%x MCTRL:%x MCTRL2:%x FCTRL:%x FSTS:%x FFILT:%x FTST:%x FCTRL2:%x\n",
base->OUTEN, base->MASK, base->SWCOUT, base->DTSRCSEL, base->MCTRL, base->MCTRL2, base->FCTRL,
base->FSTS, base->FFILT, base->FTST, base->FCTRL2);
for (uint8_t i = 0; i < 4; i++) {
mp_printf(&mp_plat_print,
"\t\t(%u) INIT:%x CTRL2:%x CTRL:%x VAL0:%x VAL1:%x VAL2:%x VAL3:%x VAL4:%x VAL5:%x OCTRL:%x DTCNT0:%x DTCNT1:%x DISMAP: %x %x\n", i,
base->SM[i].INIT, base->SM[i].CTRL2, base->SM[i].CTRL, base->SM[i].VAL0, base->SM[i].VAL1, base->SM[i].VAL2,
base->SM[i].VAL3, base->SM[i].VAL4, base->SM[i].VAL5, base->SM[i].OCTRL, base->SM[i].DTCNT0, base->SM[i].DTCNT1,
base->SM[i].DISMAP[0], base->SM[i].DISMAP[1]);
}
}
#else
#define DBGPrintf(p,...)
inline void debug_print_flexpwm_registers(PWM_Type *base) {
}
#endif
pwmout_result_t common_hal_pwmio_pwmout_construct(pwmio_pwmout_obj_t *self,
const mcu_pin_obj_t *pin,
uint16_t duty,
uint32_t frequency,
bool variable_frequency) {
self->pin = pin;
self->variable_frequency = variable_frequency;
const uint32_t pwm_count = sizeof(mcu_pwm_list) / sizeof(mcu_pwm_obj_t);
DBGPrintf(&mp_plat_print, ">>> common_hal_pwmio_pwmout_construct called: pin: %p %u freq:%u duty:%u var:%u\n",
self->pin->gpio, self->pin->number, frequency, duty, variable_frequency);
for (uint32_t i = 0; i < pwm_count; ++i) {
if (mcu_pwm_list[i].pin != pin) {
continue;
}
self->pwm = &mcu_pwm_list[i];
break;
}
if (self->pwm == NULL) {
return PWMOUT_INVALID_PIN;
}
DBGPrintf(&mp_plat_print, "\tFound in PWM List\n");
config_periph_pin(self->pwm);
pwm_config_t pwmConfig;
/*
* pwmConfig.enableDebugMode = false;
* pwmConfig.enableWait = false;
* pwmConfig.reloadSelect = kPWM_LocalReload;
* pwmConfig.faultFilterCount = 0;
* pwmConfig.faultFilterPeriod = 0;
* pwmConfig.clockSource = kPWM_BusClock;
* pwmConfig.prescale = kPWM_Prescale_Divide_1;
* pwmConfig.initializationControl = kPWM_Initialize_LocalSync;
* pwmConfig.forceTrigger = kPWM_Force_Local;
* pwmConfig.reloadFrequency = kPWM_LoadEveryOportunity;
* pwmConfig.reloadLogic = kPWM_ReloadImmediate;
* pwmConfig.pairOperation = kPWM_Independent;
*/
PWM_GetDefaultConfig(&pwmConfig);
// pwmConfig.reloadLogic = kPWM_ReloadPwmFullCycle;
pwmConfig.enableDebugMode = true;
self->pulse_count = calculate_pulse_count(frequency, &self->prescaler);
if (self->pulse_count == 0) {
return PWMOUT_INVALID_FREQUENCY;
}
pwmConfig.prescale = self->prescaler;
DBGPrintf(&mp_plat_print, "\tCall PWM_Init\n");
if (PWM_Init(self->pwm->pwm, self->pwm->submodule, &pwmConfig) == kStatus_Fail) {
return PWMOUT_INVALID_PIN;
}
// Disable all fault inputs
self->pwm->pwm->SM[self->pwm->submodule].DISMAP[0] = 0;
self->pwm->pwm->SM[self->pwm->submodule].DISMAP[1] = 0;
DBGPrintf(&mp_plat_print, "\tCall PWM_SetupPwm %p %x %u\n", self->pwm->pwm, self->pwm->submodule);
// ========================================================================================================
// Not calling the PWM_SetupPwm as it was setup to only work for PWM output on chan A and B but not X
// I have done some experimenting, probably could try others, but again they do not work with X.
// Most of the code checks to see if A if not, then it assume B.
//
// Instead I set it up to work similar to what the Teensy 4.x code does.
//
// That is we set the PWM_CTRL_FULL_MASK, which then uses base->SM[submodule].VAL1 to control
// when the timer is reset, so it sets up your cycle/frequency. But then this implies that X channel
// which uses 0, 1 has to be handled specially. So for the different channels:
// A - Uses VAL2 to turn on (0) and VAL3=duty to turn off
// B - Uses VAL4 to turn on (0) and VAL5 to turn off
// X - As mentioned above VAL1 turns off, but it's set to the timing for frequency. so
// VAL0 turns on, so we set it to VAL1 - duty
//
PWM_Type *base = self->pwm->pwm;
uint8_t submodule = self->pwm->submodule;
uint32_t mask = 1 << submodule;
uint32_t olddiv = base->SM[submodule].VAL1 + 1;
if (self->pulse_count != olddiv) {
base->MCTRL |= PWM_MCTRL_CLDOK(mask);
base->SM[submodule].CTRL = PWM_CTRL_PRSC_MASK | PWM_CTRL_PRSC(self->prescaler);
base->SM[submodule].VAL1 = self->pulse_count - 1;
base->SM[submodule].CTRL2 = PWM_CTRL2_INDEP_MASK | PWM_CTRL2_WAITEN_MASK | PWM_CTRL2_DBGEN_MASK;
if (olddiv == 1) {
base->SM[submodule].CTRL = PWM_CTRL_FULL_MASK;
base->SM[submodule].VAL0 = 0;
base->SM[submodule].VAL2 = 0;
base->SM[submodule].VAL3 = 0;
base->SM[submodule].VAL4 = 0;
base->SM[submodule].VAL5 = 0;
} else {
base->SM[submodule].VAL0 = (base->SM[submodule].VAL0 * self->pulse_count) / olddiv;
base->SM[submodule].VAL3 = (base->SM[submodule].VAL3 * self->pulse_count) / olddiv;
base->SM[submodule].VAL5 = (base->SM[submodule].VAL5 * self->pulse_count) / olddiv;
}
base->MCTRL |= PWM_MCTRL_LDOK(mask);
}
debug_print_flexpwm_registers(self->pwm->pwm);
PWM_SetPwmLdok(self->pwm->pwm, 1 << self->pwm->submodule, true);
PWM_StartTimer(self->pwm->pwm, 1 << self->pwm->submodule);
DBGPrintf(&mp_plat_print, "\tCall common_hal_pwmio_pwmout_set_duty_cycle\n");
common_hal_pwmio_pwmout_set_duty_cycle(self, duty);
DBGPrintf(&mp_plat_print, "\tReturn OK\n");
return PWMOUT_OK;
}
bool common_hal_pwmio_pwmout_deinited(pwmio_pwmout_obj_t *self) {
return self->pin == NULL;
}
void common_hal_pwmio_pwmout_deinit(pwmio_pwmout_obj_t *self) {
if (common_hal_pwmio_pwmout_deinited(self)) {
return;
}
common_hal_reset_pin(self->pin);
self->pin = NULL;
}
void common_hal_pwmio_pwmout_set_duty_cycle(pwmio_pwmout_obj_t *self, uint16_t duty) {
// we do not use PWM_UpdatePwmDutycycle because ...
// * it works in integer percents
// * it can't set the "X" duty cycle
// As mentioned in the setting up of the frequency code
// A - Uses VAL2 to turn on (0) and VAL3=duty to turn off
// B - Uses VAL4 to turn on (0) and VAL5 to turn off
// X - As mentioned above VAL1 turns off, but it's set to the timing for frequency. so
// VAL0 turns on, so we set it to VAL1 - duty
DBGPrintf(&mp_plat_print, "common_hal_pwmio_pwmout_set_duty_cycle %u\n", duty);
self->duty_cycle = duty;
PWM_Type *base = self->pwm->pwm;
uint8_t mask = 1 << self->pwm->submodule;
if (duty == 65535) {
self->duty_scaled = self->pulse_count + 1;
} else {
self->duty_scaled = ((uint32_t)duty * self->pulse_count + self->pulse_count / 2) / 65535;
}
switch (self->pwm->channel) {
case kPWM_PwmX:
base->SM[self->pwm->submodule].VAL0 = self->pulse_count - self->duty_scaled;
base->OUTEN |= PWM_OUTEN_PWMX_EN(mask);
break;
case kPWM_PwmA:
base->SM[self->pwm->submodule].VAL3 = self->duty_scaled;
base->OUTEN |= PWM_OUTEN_PWMA_EN(mask);
break;
case kPWM_PwmB:
base->SM[self->pwm->submodule].VAL5 = self->duty_scaled;
base->OUTEN |= PWM_OUTEN_PWMB_EN(mask);
}
PWM_SetPwmLdok(self->pwm->pwm, 1 << self->pwm->submodule, true);
debug_print_flexpwm_registers(self->pwm->pwm);
}
uint16_t common_hal_pwmio_pwmout_get_duty_cycle(pwmio_pwmout_obj_t *self) {
if (self->duty_cycle == 65535) {
return 65535;
}
return ((uint32_t)self->duty_scaled * 65535 + 65535 / 2) / self->pulse_count;
}
void common_hal_pwmio_pwmout_set_frequency(pwmio_pwmout_obj_t *self,
uint32_t frequency) {
int pulse_count = calculate_pulse_count(frequency, &self->prescaler);
if (pulse_count == 0) {
mp_raise_ValueError(translate("Invalid PWM frequency"));
}
self->pulse_count = pulse_count;
// a small glitch can occur when adjusting the prescaler, from the setting
// of CTRL just below to the setting of the Ldok register in
// set_duty_cycle.
uint32_t reg = self->pwm->pwm->SM[self->pwm->submodule].CTRL;
reg &= ~(PWM_CTRL_PRSC_MASK);
reg |= PWM_CTRL_PRSC(self->prescaler);
self->pwm->pwm->SM[self->pwm->submodule].CTRL = reg;
self->pwm->pwm->SM[self->pwm->submodule].VAL1 = self->pulse_count;
// we need to recalculate the duty cycle. As a side effect of this
common_hal_pwmio_pwmout_set_duty_cycle(self, self->duty_cycle);
}
uint32_t common_hal_pwmio_pwmout_get_frequency(pwmio_pwmout_obj_t *self) {
return PWM_SRC_CLK_FREQ / self->pulse_count / (1 << self->prescaler);
}
bool common_hal_pwmio_pwmout_get_variable_frequency(pwmio_pwmout_obj_t *self) {
return self->variable_frequency;
}
const mcu_pin_obj_t *common_hal_pwmio_pwmout_get_pin(pwmio_pwmout_obj_t *self) {
return self->pin;
}