circuitpython/ports/atmel-samd/common-hal/pulseio/PWMOut.c
Scott Shawcroft 28642ab10d Add audio output support!
This evolves the API from 2.x (and breaks it). Playback devices are now
separate from the samples themselves. This allows for greater playback
flexibility. Two sample sources are audioio.RawSample and audioio.WaveFile.
They can both be mono or stereo. They can be output to audioio.AudioOut or
audiobusio.I2SOut.

Internally, the dma tracking has changed from a TC counting block transfers
to an interrupt generated by the block event sent to the EVSYS. This reduces
the overhead of each DMA transfer so multiple can occure without using up TCs.

Fixes #652. Fixes #522. Huge progress on #263
2018-04-12 16:35:13 -07:00

437 lines
15 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "py/runtime.h"
#include "common-hal/pulseio/PWMOut.h"
#include "shared-bindings/pulseio/PWMOut.h"
#include "shared-bindings/microcontroller/Processor.h"
#include "atmel_start_pins.h"
#include "hal/utils/include/utils_repeat_macro.h"
#include "timers.h"
#include "samd21_pins.h"
#undef ENABLE
# define _TCC_SIZE(unused, n) TCC ## n ## _SIZE,
# define TCC_SIZES { REPEAT_MACRO(_TCC_SIZE, 0, TCC_INST_NUM) }
static uint32_t tcc_periods[TCC_INST_NUM];
static uint32_t tc_periods[TC_INST_NUM];
uint32_t target_tcc_frequencies[TCC_INST_NUM];
uint8_t tcc_refcount[TCC_INST_NUM];
// This bitmask keeps track of which channels of a TCC are currently claimed.
#ifdef SAMD21
uint8_t tcc_channels[3] = {0xf0, 0xfc, 0xfc};
#endif
#ifdef SAMD51
uint8_t tcc_channels[5] = {0xc0, 0xf0, 0xf8, 0xfc, 0xfc};
#endif
void pwmout_reset(void) {
// Reset all timers
for (int i = 0; i < TCC_INST_NUM; i++) {
target_tcc_frequencies[i] = 0;
tcc_refcount[i] = 0;
}
Tcc *tccs[TCC_INST_NUM] = TCC_INSTS;
for (int i = 0; i < TCC_INST_NUM; i++) {
// Disable the module before resetting it.
if (tccs[i]->CTRLA.bit.ENABLE == 1) {
tccs[i]->CTRLA.bit.ENABLE = 0;
while (tccs[i]->SYNCBUSY.bit.ENABLE == 1) {
}
}
uint8_t mask = 0xff;
for (uint8_t j = 0; j < tcc_cc_num[i]; j++) {
mask <<= 1;
}
tcc_channels[i] = 0xf0;
tccs[i]->CTRLA.bit.SWRST = 1;
}
Tc *tcs[TC_INST_NUM] = TC_INSTS;
for (int i = 0; i < TC_INST_NUM; i++) {
tcs[i]->COUNT16.CTRLA.bit.SWRST = 1;
while (tcs[i]->COUNT16.CTRLA.bit.SWRST == 1) {
}
}
}
static uint8_t tcc_channel(const pin_timer_t* t) {
// For the SAMD51 this hardcodes the use of OTMX == 0x0, the output matrix mapping, which uses
// SAMD21-style modulo mapping.
return t->wave_output % tcc_cc_num[t->index];
}
bool channel_ok(const pin_timer_t* t) {
uint8_t channel_bit = 1 << tcc_channel(t);
return (!t->is_tc && ((tcc_channels[t->index] & channel_bit) == 0)) ||
t->is_tc;
}
void common_hal_pulseio_pwmout_construct(pulseio_pwmout_obj_t* self,
const mcu_pin_obj_t* pin,
uint16_t duty,
uint32_t frequency,
bool variable_frequency) {
self->pin = pin;
self->variable_frequency = variable_frequency;
if (pin->timer[0].index >= TC_INST_NUM &&
pin->timer[1].index >= TCC_INST_NUM
#ifdef SAMD51
&& pin->timer[2].index >= TCC_INST_NUM
#endif
) {
mp_raise_ValueError("Invalid pin");
}
if (frequency == 0 || frequency > 6000000) {
mp_raise_ValueError("Invalid PWM frequency");
}
// Figure out which timer we are using.
// First see if a tcc is already going with the frequency we want and our
// channel is unused. tc's don't have neough channels to share.
const pin_timer_t* timer = NULL;
uint8_t mux_position = 0;
if (!variable_frequency) {
for (uint8_t i = 0; i < TCC_INST_NUM && timer == NULL; i++) {
if (target_tcc_frequencies[i] != frequency) {
continue;
}
for (uint8_t j = 0; j < NUM_TIMERS_PER_PIN && timer == NULL; j++) {
const pin_timer_t* t = &pin->timer[j];
if (t->index != i || t->is_tc || t->index >= TCC_INST_NUM) {
continue;
}
Tcc* tcc = tcc_insts[t->index];
if (tcc->CTRLA.bit.ENABLE == 1 && channel_ok(t)) {
timer = t;
mux_position = j;
}
}
}
}
// No existing timer has been found, so find a new one to use and set it up.
if (timer == NULL) {
// By default, with fixed frequency we want to share a TCC because its likely we'll have
// other outputs at the same frequency. If the frequency is variable then we'll only have
// one output so we start with the TCs to see if they work.
int8_t direction = -1;
uint8_t start = NUM_TIMERS_PER_PIN - 1;
if (variable_frequency) {
direction = 1;
start = 0;
}
for (int8_t i = start; i >= 0 && i < NUM_TIMERS_PER_PIN && timer == NULL; i += direction) {
const pin_timer_t* t = &pin->timer[i];
if ((!t->is_tc && t->index >= TCC_INST_NUM) ||
(t->is_tc && t->index >= TC_INST_NUM)) {
continue;
}
if (t->is_tc) {
Tc* tc = tc_insts[t->index];
if (tc->COUNT16.CTRLA.bit.ENABLE == 0 && t->wave_output == 1) {
timer = t;
mux_position = i;
}
} else {
Tcc* tcc = tcc_insts[t->index];
if (tcc->CTRLA.bit.ENABLE == 0 && channel_ok(t)) {
timer = t;
mux_position = i;
}
}
}
if (timer == NULL) {
mp_raise_RuntimeError("All timers in use");
return;
}
uint8_t resolution = 0;
if (timer->is_tc) {
resolution = 16;
} else {
// TCC resolution varies so look it up.
const uint8_t _tcc_sizes[TCC_INST_NUM] = TCC_SIZES;
resolution = _tcc_sizes[timer->index];
}
// First determine the divisor that gets us the highest resolution.
uint32_t system_clock = common_hal_mcu_processor_get_frequency();
uint32_t top;
uint8_t divisor;
for (divisor = 0; divisor < 8; divisor++) {
top = (system_clock / prescaler[divisor] / frequency) - 1;
if (top < (1u << resolution)) {
break;
}
}
// We use the zeroeth clock on either port to go full speed.
turn_on_clocks(timer->is_tc, timer->index, 0);
if (timer->is_tc) {
tc_periods[timer->index] = top;
Tc* tc = tc_insts[timer->index];
#ifdef SAMD21
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
TC_CTRLA_PRESCALER(divisor) |
TC_CTRLA_WAVEGEN_MPWM;
tc->COUNT16.CC[0].reg = top;
#endif
#ifdef SAMD51
tc->COUNT16.CTRLA.bit.SWRST = 1;
while (tc->COUNT16.CTRLA.bit.SWRST == 1) {
}
tc_set_enable(tc, false);
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER(divisor);
tc->COUNT16.WAVE.reg = TC_WAVE_WAVEGEN_MPWM;
tc->COUNT16.CCBUF[0].reg = top;
tc->COUNT16.CCBUF[1].reg = 0;
#endif
tc_set_enable(tc, true);
} else {
tcc_periods[timer->index] = top;
Tcc* tcc = tcc_insts[timer->index];
tcc_set_enable(tcc, false);
tcc->CTRLA.bit.PRESCALER = divisor;
tcc->PER.bit.PER = top;
tcc->WAVE.bit.WAVEGEN = TCC_WAVE_WAVEGEN_NPWM_Val;
tcc_set_enable(tcc, true);
target_tcc_frequencies[timer->index] = frequency;
tcc_refcount[timer->index]++;
if (variable_frequency) {
// We're changing frequency so claim all of the channels.
tcc_channels[timer->index] = 0xff;
} else {
tcc_channels[timer->index] |= (1 << tcc_channel(timer));
}
}
}
self->timer = timer;
gpio_set_pin_function(pin->pin, GPIO_PIN_FUNCTION_E + mux_position);
common_hal_pulseio_pwmout_set_duty_cycle(self, duty);
}
bool common_hal_pulseio_pwmout_deinited(pulseio_pwmout_obj_t* self) {
return self->pin == mp_const_none;
}
void common_hal_pulseio_pwmout_deinit(pulseio_pwmout_obj_t* self) {
if (common_hal_pulseio_pwmout_deinited(self)) {
return;
}
const pin_timer_t* t = self->timer;
if (t->is_tc) {
Tc* tc = tc_insts[t->index];
tc_set_enable(tc, false);
tc->COUNT16.CTRLA.bit.SWRST = true;
tc_wait_for_sync(tc);
} else {
tcc_refcount[t->index]--;
tcc_channels[t->index] &= ~(1 << tcc_channel(t));
if (tcc_refcount[t->index] == 0) {
target_tcc_frequencies[t->index] = 0;
Tcc* tcc = tcc_insts[t->index];
tcc_set_enable(tcc, false);
tcc->CTRLA.bit.SWRST = true;
while (tcc->SYNCBUSY.bit.SWRST != 0) {
/* Wait for sync */
}
}
}
reset_pin(self->pin->pin);
self->pin = mp_const_none;
}
extern void common_hal_pulseio_pwmout_set_duty_cycle(pulseio_pwmout_obj_t* self, uint16_t duty) {
const pin_timer_t* t = self->timer;
if (t->is_tc) {
uint16_t adjusted_duty = tc_periods[t->index] * duty / 0xffff;
#ifdef SAMD21
tc_insts[t->index]->COUNT16.CC[t->wave_output].reg = adjusted_duty;
#endif
#ifdef SAMD51
Tc* tc = tc_insts[t->index];
while (tc->COUNT16.SYNCBUSY.bit.CC1 != 0) {
// Wait for a previous value to be written. This can wait up to one period so we do
// other stuff in the meantime.
#ifdef MICROPY_VM_HOOK_LOOP
MICROPY_VM_HOOK_LOOP
#endif
}
tc->COUNT16.CCBUF[1].reg = adjusted_duty;
#endif
} else {
uint32_t adjusted_duty = ((uint64_t) tcc_periods[t->index]) * duty / 0xffff;
uint8_t channel = tcc_channel(t);
Tcc* tcc = tcc_insts[t->index];
while ((tcc->SYNCBUSY.vec.CC & (1 << channel)) != 0) {
// Wait for a previous value to be written. This can wait up to one period so we do
// other stuff in the meantime.
#ifdef MICROPY_VM_HOOK_LOOP
MICROPY_VM_HOOK_LOOP
#endif
}
#ifdef SAMD21
tcc->CCB[channel].reg = adjusted_duty;
#endif
#ifdef SAMD51
tcc->CCBUF[channel].reg = adjusted_duty;
#endif
}
}
uint16_t common_hal_pulseio_pwmout_get_duty_cycle(pulseio_pwmout_obj_t* self) {
const pin_timer_t* t = self->timer;
if (t->is_tc) {
Tc* tc = tc_insts[t->index];
tc_wait_for_sync(tc);
uint16_t cv = tc->COUNT16.CC[t->wave_output].reg;
return cv * 0xffff / tc_periods[t->index];
} else {
Tcc* tcc = tcc_insts[t->index];
uint8_t channel = tcc_channel(t);
uint32_t cv = 0;
#ifdef SAMD21
if ((tcc->STATUS.vec.CCBV & (1 << channel)) != 0) {
cv = tcc->CCB[channel].reg;
} else {
cv = tcc->CC[channel].reg;
}
#endif
#ifdef SAMD51
if ((tcc->STATUS.vec.CCBUFV & (1 << channel)) != 0) {
cv = tcc->CCBUF[channel].reg;
} else {
cv = tcc->CC[channel].reg;
}
#endif
uint32_t duty_cycle = ((uint64_t) cv) * 0xffff / tcc_periods[t->index];
return duty_cycle;
}
}
void common_hal_pulseio_pwmout_set_frequency(pulseio_pwmout_obj_t* self,
uint32_t frequency) {
if (frequency == 0 || frequency > 6000000) {
mp_raise_ValueError("Invalid PWM frequency");
}
const pin_timer_t* t = self->timer;
uint8_t resolution;
if (t->is_tc) {
resolution = 16;
} else {
resolution = 24;
}
uint32_t system_clock = common_hal_mcu_processor_get_frequency();
uint32_t new_top;
uint8_t new_divisor;
for (new_divisor = 0; new_divisor < 8; new_divisor++) {
new_top = (system_clock / prescaler[new_divisor] / frequency) - 1;
if (new_top < (1u << resolution)) {
break;
}
}
uint16_t old_duty = common_hal_pulseio_pwmout_get_duty_cycle(self);
if (t->is_tc) {
Tc* tc = tc_insts[t->index];
uint8_t old_divisor = tc->COUNT16.CTRLA.bit.PRESCALER;
if (new_divisor != old_divisor) {
tc_set_enable(tc, false);
tc->COUNT16.CTRLA.bit.PRESCALER = new_divisor;
tc_set_enable(tc, true);
}
tc_periods[t->index] = new_top;
#ifdef SAMD21
tc->COUNT16.CC[0].reg = new_top;
#endif
#ifdef SAMD51
while (tc->COUNT16.SYNCBUSY.reg != 0) {
/* Wait for sync */
}
tc->COUNT16.CCBUF[0].reg = new_top;
#endif
} else {
Tcc* tcc = tcc_insts[t->index];
uint8_t old_divisor = tcc->CTRLA.bit.PRESCALER;
if (new_divisor != old_divisor) {
tcc_set_enable(tcc, false);
tcc->CTRLA.bit.PRESCALER = new_divisor;
tcc_set_enable(tcc, true);
}
tcc_periods[t->index] = new_top;
#ifdef SAMD21
tcc->PERB.bit.PERB = new_top;
#endif
#ifdef SAMD51
while (tcc->SYNCBUSY.reg != 0) {
/* Wait for sync */
}
tcc->PERBUF.bit.PERBUF = new_top;
#endif
}
common_hal_pulseio_pwmout_set_duty_cycle(self, old_duty);
}
uint32_t common_hal_pulseio_pwmout_get_frequency(pulseio_pwmout_obj_t* self) {
uint32_t system_clock = common_hal_mcu_processor_get_frequency();
const pin_timer_t* t = self->timer;
uint8_t divisor;
uint32_t top;
if (t->is_tc) {
divisor = tc_insts[t->index]->COUNT16.CTRLA.bit.PRESCALER;
top = tc_periods[t->index];
} else {
divisor = tcc_insts[t->index]->CTRLA.bit.PRESCALER;
top = tcc_periods[t->index];
}
return (system_clock / prescaler[divisor]) / (top + 1);
}
bool common_hal_pulseio_pwmout_get_variable_frequency(pulseio_pwmout_obj_t* self) {
return self->variable_frequency;
}