circuitpython/ports/stm/common-hal/analogio/AnalogIn.c
2022-05-20 10:10:55 -04:00

214 lines
6.9 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2019 Lucian Copeland for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "common-hal/analogio/AnalogIn.h"
#include "py/runtime.h"
#include "supervisor/shared/translate.h"
#include "shared-bindings/microcontroller/Pin.h"
#if CPY_STM32L4
#include "stm32l4xx_hal.h"
#include "stm32l4xx_ll_gpio.h"
#include "stm32l4xx_ll_adc.h"
#include "stm32l4xx_ll_bus.h"
#define ADC_SAMPLETIME ADC_SAMPLETIME_24CYCLES_5
#define LL_APB2_GRP1_PERIPH_ADC1 LL_AHB2_GRP1_PERIPH_ADC
#else
#include "stm32f4xx_hal.h"
#include "stm32f4xx_ll_gpio.h"
#include "stm32f4xx_ll_adc.h"
#include "stm32f4xx_ll_bus.h"
#define ADC_SAMPLETIME ADC_SAMPLETIME_15CYCLES
#endif
void common_hal_analogio_analogin_construct(analogio_analogin_obj_t *self,
const mcu_pin_obj_t *pin) {
// No ADC function on pin
if (pin->adc_unit == 0x00) {
raise_ValueError_invalid_pin();
}
// TODO: add ADC traits to structure?
// Note that ADC2 is always bundled pin-to-pin with ADC1 if it exists, and used only
// for dual conversion. For this basic application it is never used.
LL_GPIO_SetPinMode(pin_port(pin->port), (uint32_t)pin_mask(pin->number), LL_GPIO_MODE_ANALOG);
if (pin->adc_unit & 0x01) {
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC1);
} else if (pin->adc_unit == 0x04) {
#ifdef LL_APB2_GRP1_PERIPH_ADC3
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_ADC3);
#endif
} else {
mp_raise_RuntimeError(translate("Invalid ADC Unit value"));
}
common_hal_mcu_pin_claim(pin);
self->pin = pin;
}
bool common_hal_analogio_analogin_deinited(analogio_analogin_obj_t *self) {
return self->pin == NULL;
}
void common_hal_analogio_analogin_deinit(analogio_analogin_obj_t *self) {
if (common_hal_analogio_analogin_deinited(self)) {
return;
}
reset_pin_number(self->pin->port,self->pin->number);
self->pin = NULL;
}
uint32_t adc_channel(uint32_t channel) {
#if CPY_STM32L4
switch (channel) {
case 0:
return ADC_CHANNEL_0;
case 1:
return ADC_CHANNEL_1;
case 2:
return ADC_CHANNEL_2;
case 3:
return ADC_CHANNEL_3;
case 4:
return ADC_CHANNEL_4;
case 5:
return ADC_CHANNEL_5;
case 6:
return ADC_CHANNEL_6;
case 7:
return ADC_CHANNEL_7;
case 8:
return ADC_CHANNEL_8;
case 9:
return ADC_CHANNEL_9;
case 10:
return ADC_CHANNEL_10;
case 11:
return ADC_CHANNEL_11;
case 12:
return ADC_CHANNEL_12;
case 13:
return ADC_CHANNEL_13;
case 14:
return ADC_CHANNEL_14;
case 15:
return ADC_CHANNEL_15;
case 16:
return ADC_CHANNEL_16;
case 17:
return ADC_CHANNEL_17;
case 18:
return ADC_CHANNEL_18;
default:
return 0;
}
#else
return channel;
#endif
}
uint16_t common_hal_analogio_analogin_get_value(analogio_analogin_obj_t *self) {
// Something else might have used the ADC in a different way,
// so we completely re-initialize it.
ADC_TypeDef *ADCx;
if (self->pin->adc_unit & 0x01) {
ADCx = ADC1;
#if CPY_STM32L4
__HAL_RCC_ADC_CLK_ENABLE();
#endif
} else if (self->pin->adc_unit == 0x04) {
#ifdef ADC3
ADCx = ADC3;
#endif
} else {
mp_raise_RuntimeError(translate("Invalid ADC Unit value"));
}
LL_GPIO_SetPinMode(pin_port(self->pin->port), (uint32_t)pin_mask(self->pin->number), LL_GPIO_MODE_ANALOG);
// LL_GPIO_PIN_0
// HAL Implementation
ADC_HandleTypeDef AdcHandle = {};
ADC_ChannelConfTypeDef sConfig = {};
AdcHandle.Instance = ADCx;
AdcHandle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
AdcHandle.Init.Resolution = ADC_RESOLUTION_12B;
AdcHandle.Init.ScanConvMode = DISABLE;
AdcHandle.Init.ContinuousConvMode = DISABLE;
AdcHandle.Init.DiscontinuousConvMode = DISABLE;
AdcHandle.Init.NbrOfDiscConversion = 0;
AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
AdcHandle.Init.ExternalTrigConv = ADC_SOFTWARE_START;
AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle.Init.NbrOfConversion = 1;
AdcHandle.Init.DMAContinuousRequests = DISABLE;
AdcHandle.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
#ifdef ADC_OVR_DATA_OVERWRITTEN
AdcHandle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; /* DR register is overwritten with the last conversion result in case of overrun */
#endif
if (HAL_ADC_Init(&AdcHandle) != HAL_OK) {
return 0;
}
sConfig.Channel = adc_channel(self->pin->adc_channel); // ADC_CHANNEL_0 <-normal iteration, not mask
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME;
#if CPY_STM32L4
sConfig.SingleDiff = ADC_SINGLE_ENDED; /* Single-ended input channel */
sConfig.OffsetNumber = ADC_OFFSET_NONE; /* No offset subtraction */
if (!IS_ADC_CHANNEL(&AdcHandle, sConfig.Channel)) {
return 0;
}
#endif
if (HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK) {
return 0;
}
#if CPY_STM32L4
if (HAL_ADCEx_Calibration_Start(&AdcHandle, ADC_SINGLE_ENDED) != HAL_OK) {
return 0;
}
#endif
if (HAL_ADC_Start(&AdcHandle) != HAL_OK) {
return 0;
}
HAL_ADC_PollForConversion(&AdcHandle,1);
uint16_t value = (uint16_t)HAL_ADC_GetValue(&AdcHandle);
HAL_ADC_Stop(&AdcHandle);
// // Shift the value to be 16 bit.
return value << 4;
}
float common_hal_analogio_analogin_get_reference_voltage(analogio_analogin_obj_t *self) {
return 3.3f;
}