circuitpython/ports/mimxrt10xx/supervisor/port.c
2023-08-14 00:59:22 -04:00

650 lines
21 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2020 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* Copyright 2018 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "supervisor/board.h"
#include "supervisor/port.h"
#include "fsl_device_registers.h"
#if CIRCUITPY_AUDIOBUSIO
#include "common-hal/audiobusio/__init__.h"
#endif
#include "common-hal/microcontroller/Pin.h"
#include "common-hal/pwmio/PWMOut.h"
#include "common-hal/rtc/RTC.h"
#include "common-hal/busio/SPI.h"
#include "shared-bindings/microcontroller/__init__.h"
#if CIRCUITPY_PEW
#include "shared-module/_pew/PewPew.h"
#endif
#include "reset.h"
#include "supervisor/background_callback.h"
#include "supervisor/linker.h"
#include "supervisor/shared/tick.h"
#include "clocks.h"
#include "sdk/drivers/igpio/fsl_gpio.h"
#include "sdk/drivers/lpuart/fsl_lpuart.h"
// Device memories must be accessed in order.
#define DEVICE 2
// Normal memory can have accesses reorder and prefetched.
#define NORMAL 0
// Prevents instruction access.
#define NO_EXECUTION 1
#define EXECUTION 0
// Shareable if the memory system manages coherency. This means shared between memory bus masters,
// not just CPUs.
#define NOT_SHAREABLE 0
#define SHAREABLE 1
//
#define NOT_CACHEABLE 0
#define CACHEABLE 1
#define NOT_BUFFERABLE 0
#define BUFFERABLE 1
#define NO_SUBREGIONS 0
extern uint32_t _ld_flash_size;
extern uint32_t _ld_stack_top;
extern uint32_t __isr_vector[];
extern uint32_t _ld_ocram_start;
extern uint32_t _ld_ocram_bss_start;
extern uint32_t _ld_ocram_bss_size;
extern uint32_t _ld_ocram_data_destination;
extern uint32_t _ld_ocram_data_size;
extern uint32_t _ld_ocram_data_flash_copy;
extern uint32_t _ld_ocram_end;
extern uint32_t _ld_dtcm_bss_start;
extern uint32_t _ld_dtcm_bss_size;
extern uint32_t _ld_dtcm_data_destination;
extern uint32_t _ld_dtcm_data_size;
extern uint32_t _ld_dtcm_data_flash_copy;
extern uint32_t _ld_itcm_destination;
extern uint32_t _ld_itcm_size;
extern uint32_t _ld_itcm_flash_copy;
extern uint32_t _ld_isr_destination;
extern uint32_t _ld_isr_size;
extern uint32_t _ld_isr_flash_copy;
extern void main(void);
// This replaces the Reset_Handler in startup_*.S and SystemInit in system_*.c.
// Turn off optimize("no-tree-loop-distribute-patterns") so that this isn't replaced
// by calls to memcpy because we're copying it over now.
void Reset_Handler(void);
__attribute__((used, naked, no_instrument_function, optimize("no-tree-loop-distribute-patterns"))) void Reset_Handler(void) {
__disable_irq();
// Set the VTOR to the flash copy since we haven't copied it into RAM.
SCB->VTOR = (uint32_t)&_ld_isr_flash_copy;
__set_MSP((uint32_t)&_ld_stack_top);
// Turn off any residual ITM outputs.
ITM->TER = 0;
/* Disable I cache and D cache */
SCB_DisableICache();
SCB_DisableDCache();
// Changing the FlexRAM must happen here where the stack is empty. If it is in a function call,
// then the return will jump to an invalid address.
// Configure FlexRAM. The e is one block of ITCM (0b11) and DTCM (0b10). The rest is two OCRAM
// (0b01). We shift in zeroes for all unimplemented banks.
uint32_t flexram_config = (0xe5555555) >> (32 - 2 * FSL_FEATURE_FLEXRAM_INTERNAL_RAM_TOTAL_BANK_NUMBERS);
// imxrt1176 splits the config across two registers.
#ifdef IOMUXC_GPR_GPR17_FLEXRAM_BANK_CFG_LOW_MASK
IOMUXC_GPR->GPR17 = flexram_config & IOMUXC_GPR_GPR17_FLEXRAM_BANK_CFG_LOW_MASK;
IOMUXC_GPR->GPR18 = (flexram_config >> 16) & IOMUXC_GPR_GPR18_FLEXRAM_BANK_CFG_HIGH_MASK;
#else
IOMUXC_GPR->GPR17 = flexram_config;
#endif
// Switch from FlexRAM fuse config to the IOMUXC values.
IOMUXC_GPR->GPR16 |= IOMUXC_GPR_GPR16_FLEXRAM_BANK_CFG_SEL(1);
// Let the core know the TCM sizes changed.
#ifdef IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ_MASK
uint32_t current_gpr14 = IOMUXC_GPR->GPR14;
current_gpr14 &= ~IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ_MASK;
current_gpr14 |= IOMUXC_GPR_GPR14_CM7_CFGDTCMSZ(0x6);
current_gpr14 &= ~IOMUXC_GPR_GPR14_CM7_CFGITCMSZ_MASK;
current_gpr14 |= IOMUXC_GPR_GPR14_CM7_CFGITCMSZ(0x6);
IOMUXC_GPR->GPR14 = current_gpr14;
#endif
// Enable FlexRAM interrupts on invalid access.
FLEXRAM->INT_STAT_EN = FLEXRAM_INT_STAT_EN_ITCM_ERR_STAT_EN(1) |
FLEXRAM_INT_STAT_EN_DTCM_ERR_STAT_EN(1) |
FLEXRAM_INT_STAT_EN_OCRAM_ERR_STAT_EN(1);
#if ((__FPU_PRESENT == 1) && (__FPU_USED == 1))
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); /* set CP10, CP11 Full Access */
#endif /* ((__FPU_PRESENT == 1) && (__FPU_USED == 1)) */
/* Disable Watchdog Power Down Counter */
#if defined(RTWDOG)
WDOG1->WMCR &= ~WDOG_WMCR_PDE_MASK;
WDOG2->WMCR &= ~WDOG_WMCR_PDE_MASK;
/* Watchdog disable */
WDOG1->WCR &= ~WDOG_WCR_WDE_MASK;
WDOG2->WCR &= ~WDOG_WCR_WDE_MASK;
RTWDOG->CNT = 0xD928C520U; /* 0xD928C520U is the update key */
RTWDOG->TOVAL = 0xFFFF;
RTWDOG->CS = (uint32_t)((RTWDOG->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK;
#endif
#if defined(RTWDOG3)
if ((WDOG1->WCR & WDOG_WCR_WDE_MASK) != 0U) {
WDOG1->WCR &= ~(uint16_t)WDOG_WCR_WDE_MASK;
}
if ((WDOG2->WCR & WDOG_WCR_WDE_MASK) != 0U) {
WDOG2->WCR &= ~(uint16_t)WDOG_WCR_WDE_MASK;
}
if ((RTWDOG3->CS & RTWDOG_CS_CMD32EN_MASK) != 0U) {
RTWDOG3->CNT = 0xD928C520U; /* 0xD928C520U is the update key */
} else {
RTWDOG3->CNT = 0xC520U;
RTWDOG3->CNT = 0xD928U;
}
RTWDOG3->TOVAL = 0xFFFF;
RTWDOG3->CS = (uint32_t)((RTWDOG3->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK;
if ((RTWDOG4->CS & RTWDOG_CS_CMD32EN_MASK) != 0U) {
RTWDOG4->CNT = 0xD928C520U; /* 0xD928C520U is the update key */
} else {
RTWDOG4->CNT = 0xC520U;
RTWDOG4->CNT = 0xD928U;
}
RTWDOG4->TOVAL = 0xFFFF;
RTWDOG4->CS = (uint32_t)((RTWDOG4->CS) & ~RTWDOG_CS_EN_MASK) | RTWDOG_CS_UPDATE_MASK;
#endif
/* Disable Systick which might be enabled by bootrom */
if (SysTick->CTRL & SysTick_CTRL_ENABLE_Msk) {
SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
}
/* Disable MPU */
ARM_MPU_Disable();
// Copy all of the itcm code to run from ITCM. Do this while the MPU is disabled because we write
// protect it.
for (uint32_t i = 0; i < ((size_t)&_ld_itcm_size) / 4; i++) {
(&_ld_itcm_destination)[i] = (&_ld_itcm_flash_copy)[i];
}
for (uint32_t i = 0; i < ((size_t)&_ld_isr_size) / 4; i++) {
(&_ld_isr_destination)[i] = (&_ld_isr_flash_copy)[i];
}
// Now that we've copied the ISR table over, use that VTOR.
SCB->VTOR = (uint32_t)&_ld_isr_destination;
// The first number in RBAR is the region number. When searching for a policy, the region with
// the highest number wins. If none match, then the default policy set at enable applies.
// This is an undocumented region and is likely more registers.
MPU->RBAR = ARM_MPU_RBAR(8, 0xC0000000U);
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, DEVICE, NOT_SHAREABLE, NOT_CACHEABLE, NOT_BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_512MB);
// This is the SEMC region where external RAM and 8+ flash would live. Disable for now, even though the EVKs have stuff here.
MPU->RBAR = ARM_MPU_RBAR(9, 0x80000000U);
MPU->RASR = ARM_MPU_RASR(NO_EXECUTION, ARM_MPU_AP_NONE, DEVICE, NOT_SHAREABLE, NOT_CACHEABLE, NOT_BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_1GB);
// FlexSPI2 is 0x70000000
// This the first portion (1MB, 2MB or 4MB) of flash is the bootloader and CircuitPython read-only data.
#if !defined(FlexSPI_AMBA_BASE)
#define FlexSPI_AMBA_BASE FlexSPI1_AMBA_BASE
#endif
MPU->RBAR = ARM_MPU_RBAR(10, FlexSPI_AMBA_BASE);
uint32_t region_size = ARM_MPU_REGION_SIZE_32B;
uint32_t code_size = ((uint32_t)&_ld_filesystem_start) - FlexSPI_AMBA_BASE;
while (code_size > (1u << (region_size + 1))) {
region_size += 1;
}
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, region_size);
// The remainder of flash is the fat filesystem which could have code on it too. Make sure that
// we set the region to the minimal size so that bad data doesn't get speculatively fetched.
// Thanks to Damien for the tip!
region_size = ARM_MPU_REGION_SIZE_32B;
uint32_t filesystem_size = &_ld_filesystem_end - &_ld_filesystem_start;
while (filesystem_size > (1u << (region_size + 1))) {
region_size += 1;
}
// Mask out as much of the remainder as we can. For example on an 8MB flash, 7MB are for the
// filesystem. The region_size here must be a power of 2 so it is 8MB. Using the subregion mask
// we can ignore 1/8th size chunks. So, we ignore the last 1MB using the subregion.
uint32_t remainder = (1u << (region_size + 1)) - filesystem_size;
uint32_t subregion_size = (1u << (region_size + 1)) / 8;
uint8_t subregion_mask = (0xff00 >> (remainder / subregion_size)) & 0xff;
MPU->RBAR = ARM_MPU_RBAR(11, (size_t)&_ld_filesystem_start);
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, subregion_mask, region_size);
// This the ITCM. Set it to read-only because we've loaded everything already and it's easy to
// accidentally write the wrong value to 0x00000000 (aka NULL).
MPU->RBAR = ARM_MPU_RBAR(12, 0x00000000U);
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_RO, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_32KB);
// This the DTCM.
MPU->RBAR = ARM_MPU_RBAR(13, 0x20000000U);
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_32KB);
// This is OCRAM. We mark it as shareable so that it isn't cached. This makes USB work at the
// cost of 1/4 speed OCRAM accesses. It will leave more room for caching data from the flash
// too which might be a net win.
MPU->RBAR = ARM_MPU_RBAR(14, ((uint32_t)&_ld_ocram_start));
MPU->RASR = ARM_MPU_RASR(NO_EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, NO_SUBREGIONS, ARM_MPU_REGION_SIZE_512KB);
#if IMXRT10XX
// We steal 64k from FlexRAM for ITCM and DTCM so disable those memory regions here.
// We use 64k from FlexRAM for ITCM and DTCM so disable those memory regions here.
MPU->RBAR = ARM_MPU_RBAR(15, ((uint32_t)&_ld_ocram_end));
MPU->RASR = ARM_MPU_RASR(EXECUTION, ARM_MPU_AP_FULL, NORMAL, NOT_SHAREABLE, CACHEABLE, BUFFERABLE, 0x80, ARM_MPU_REGION_SIZE_512KB);
#else
// On the iMX RT 11xx OCRAM is not flexram (for now). So no need to mask it off.
#endif
/* Enable MPU */
ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk);
/* We're done mucking with memory so enable I cache and D cache */
SCB_EnableDCache();
SCB_EnableICache();
// Copy all of the data to run from DTCM.
for (uint32_t i = 0; i < ((size_t)&_ld_dtcm_data_size) / 4; i++) {
(&_ld_dtcm_data_destination)[i] = (&_ld_dtcm_data_flash_copy)[i];
}
// Clear DTCM bss.
for (uint32_t i = 0; i < ((size_t)&_ld_dtcm_bss_size) / 4; i++) {
(&_ld_dtcm_bss_start)[i] = 0;
}
// Copy all of the data to run from OCRAM.
for (uint32_t i = 0; i < ((size_t)&_ld_ocram_data_size) / 4; i++) {
(&_ld_ocram_data_destination)[i] = (&_ld_ocram_data_flash_copy)[i];
}
// Clear OCRAM bss.
for (uint32_t i = 0; i < ((size_t)&_ld_ocram_bss_size) / 4; i++) {
(&_ld_ocram_bss_start)[i] = 0;
}
__enable_irq();
main();
}
void __attribute__((no_instrument_function, section(".itcm.profile_enter"), long_call)) __cyg_profile_func_enter(void *this_fn,
void *call_site) {
if ((ITM->TER & (1 << 3)) == 0) {
return;
}
uint32_t addr = (uint32_t)this_fn;
while (ITM->PORT[3U].u32 == 0UL) {
// addr |= 1;
}
ITM->PORT[3].u32 = addr;
}
void __attribute__((no_instrument_function, section(".itcm.profile_exit"), long_call)) __cyg_profile_func_exit(void *this_fn,
void *call_site) {
if ((ITM->TER & (1 << 4)) == 0) {
return;
}
uint32_t addr = (uint32_t)this_fn;
while (ITM->PORT[4U].u32 == 0UL) {
// addr |= 1;
}
ITM->PORT[4].u32 = addr;
}
safe_mode_t port_init(void) {
#if IMXRT10XX
CLOCK_SetMode(kCLOCK_ModeRun);
#endif
clocks_init();
// Turn on the DWT so that neopixel_write can use CYCCNT for timing.
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
DWT->CTRL = 0x2 << DWT_CTRL_SYNCTAP_Pos | DWT_CTRL_CYCCNTENA_Msk;
// Enable SWO if needed.
#if CIRCUITPY_SWO_TRACE
// Turn on the 528 MHz clock to the TPIU.
CLOCK_EnableClock(kCLOCK_Trace); /* Make these edits*/
/* Set TRACE_PODF. */
CLOCK_SetDiv(kCLOCK_TraceDiv, 0); /* Make these edits*/
/* Set Trace clock source. */
CLOCK_SetMux(kCLOCK_TraceMux, 0); /* Make these edits*/
ITM->TCR = ITM_TCR_TSENA_Msk | ITM_TCR_ITMENA_Msk | ITM_TCR_SYNCENA_Msk | ITM_TCR_DWTENA_Msk;
// Run at 2.75 mbaud. CP2102N says it can do up to 3.
// Base clock is 528 mhz (not 500 like the core).
// TPI->ACPR = 191;
// Run at 1 mbaud so that USB isn't bottlenecked.
TPI->ACPR = 527;
TPI->SPPR = 0x2; // NRZ aka UART
TPI->FFCR = 0;
IOMUXC_SetPinMux( /* Add these lines*/
IOMUXC_GPIO_AD_09_ARM_TRACE_SWO,
0U);
IOMUXC_SetPinConfig( /* Add these lines*/
IOMUXC_GPIO_AD_09_ARM_TRACE_SWO,
0x00F9U);
// Enable ports 0-4:
// * 0 is serial output
// *
// * 3 is addresses of functions beginning.
// * 4 is addresses of functions ending.
ITM->TER |= 0x1f;
ITM->PORT[0].u8 = 'C';
ITM->PORT[0].u8 = 'P';
ITM->PORT[0].u8 = '\n';
#endif
// Set all peripheral interrupt priorities to the lowest priority by default.
for (uint16_t i = 0; i < NUMBER_OF_INT_VECTORS; i++) {
NVIC_SetPriority(i, (1UL << __NVIC_PRIO_BITS) - 1UL);
}
#ifdef MIMXRT1042_SERIES
#define USB_OTG1_IRQn USB_OTG_IRQn
#endif
NVIC_SetPriority(USB_OTG1_IRQn, 1);
#ifdef USBPHY2
NVIC_SetPriority(USB_OTG2_IRQn, 1);
#endif
NVIC_SetPriority(FLEXRAM_IRQn, 0);
NVIC_EnableIRQ(FLEXRAM_IRQn);
// Priorities 8+ will be disabled during flash operations. To run during
// flash operations, ensure all code is in RAM (not flash) and set the
// priority < 8.
#if CIRCUITPY_RTC
rtc_init();
#endif
// Always enable the SNVS interrupt. The GPC won't wake us up unless at least one interrupt is
// enabled. It won't occur very often so it'll be low overhead.
#if IMXRT11XX
NVIC_EnableIRQ(SNVS_HP_NON_TZ_IRQn);
#else
NVIC_EnableIRQ(SNVS_HP_WRAPPER_IRQn);
#endif
#if IMXRT11XX
/* Save SRSR to another register so we can read it later. */
SRC->GPR[11] = SRC->SRSR;
SRC->SRSR = 0xFFFFFFFFU;
if ((SRC->GPR[11] & SRC_SRSR_M7_LOCKUP_M7_MASK) != 0) {
return SAFE_MODE_HARD_FAULT;
}
#endif
// Note that `reset_port` CANNOT GO HERE, unlike other ports, because `board_init` hasn't been
// run yet, which uses `never_reset` to protect critical pins from being reset by `reset_port`.
if (board_requests_safe_mode()) {
return SAFE_MODE_USER;
}
return SAFE_MODE_NONE;
}
void reset_port(void) {
#if CIRCUITPY_BUSIO
spi_reset();
#endif
#if CIRCUITPY_AUDIOIO
audio_dma_reset();
audioout_reset();
#endif
#if CIRCUITPY_AUDIOBUSIO
i2s_reset();
#endif
#if CIRCUITPY_TOUCHIO && CIRCUITPY_TOUCHIO_USE_NATIVE
touchin_reset();
#endif
// eic_reset();
#if CIRCUITPY_PWMIO
reset_all_flexpwm();
#endif
#if CIRCUITPY_RTC
rtc_reset();
#endif
#if CIRCUITPY_PEW
pew_reset();
#endif
// reset_event_system();
reset_all_pins();
}
void reset_to_bootloader(void) {
DBL_TAP_REG = DBL_TAP_MAGIC;
reset();
}
void PLACE_IN_ITCM(reset_cpu)(void) {
reset();
}
extern uint32_t _ld_heap_start, _ld_heap_end, _ld_stack_top, _ld_stack_bottom;
uint32_t *port_stack_get_limit(void) {
return &_ld_stack_bottom;
}
uint32_t *port_stack_get_top(void) {
return &_ld_stack_top;
}
bool port_has_fixed_stack(void) {
return true;
}
uint32_t *port_heap_get_bottom(void) {
return &_ld_heap_start;
}
// Get heap top address
uint32_t *port_heap_get_top(void) {
return &_ld_heap_end;
}
// Place the word into the low power section of the SNVS.
void PLACE_IN_ITCM(port_set_saved_word)(uint32_t value) {
SNVS->LPGPR[1] = value;
}
uint32_t port_get_saved_word(void) {
return SNVS->LPGPR[1];
}
uint64_t port_get_raw_ticks(uint8_t *subticks) {
uint64_t ticks = 0;
uint64_t next_ticks = 1;
while (ticks != next_ticks) {
ticks = next_ticks;
next_ticks = ((uint64_t)SNVS->HPRTCMR) << 32 | SNVS->HPRTCLR;
}
if (subticks != NULL) {
*subticks = ticks % 32;
}
return ticks / 32;
}
#if IMXRT10XX
void SNVS_HP_WRAPPER_IRQHandler(void);
__attribute__((used))
void PLACE_IN_ITCM(SNVS_HP_WRAPPER_IRQHandler)(void) {
#else
void SNVS_HP_NON_TZ_IRQHandler(void);
__attribute__((used))
void PLACE_IN_ITCM(SNVS_HP_NON_TZ_IRQHandler)(void) {
#endif
if ((SNVS->HPSR & SNVS_HPSR_PI_MASK) != 0) {
supervisor_tick();
SNVS->HPSR = SNVS_HPSR_PI_MASK;
}
if ((SNVS->HPSR & SNVS_HPSR_HPTA_MASK) != 0) {
SNVS->HPSR = SNVS_HPSR_HPTA_MASK;
}
}
// Enable 1/1024 second tick.
void port_enable_tick(void) {
uint32_t hpcr = SNVS->HPCR;
hpcr &= ~SNVS_HPCR_PI_FREQ_MASK;
SNVS->HPCR = hpcr | SNVS_HPCR_PI_FREQ(5) | SNVS_HPCR_PI_EN_MASK;
}
// Disable 1/1024 second tick.
void port_disable_tick(void) {
SNVS->HPCR &= ~SNVS_HPCR_PI_EN_MASK;
}
void port_interrupt_after_ticks(uint32_t ticks) {
uint8_t subticks;
uint64_t current_ticks = port_get_raw_ticks(&subticks);
current_ticks += ticks;
SNVS->HPCR &= ~SNVS_HPCR_HPTA_EN_MASK;
// Wait for the alarm to be disabled.
while ((SNVS->HPCR & SNVS_HPCR_HPTA_EN_MASK) != 0) {
}
SNVS->HPTAMR = current_ticks >> (32 - 5);
SNVS->HPTALR = current_ticks << 5 | subticks;
SNVS->HPCR |= SNVS_HPCR_HPTA_EN_MASK;
}
void port_idle_until_interrupt(void) {
// App note here: https://www.nxp.com/docs/en/application-note/AN12085.pdf
// Currently I have disabled the setting into wait mode as this impacts lots of different
// subsystems and it is unclear if you can or should set it generically without having
// a better understanding of user intent. For example by default it will kill PWM
// when in this mode, unless PWM_CTRL2_WAITEN_MASK is set, and even with this set
// it may not work properly if the same timer/subtimer is trying to PWM on multiple channels.
// Maybe at later date, revisit after we have a better understanding on things like which
// timers it impacts and how each subsystem is configured.
// Clear the FPU interrupt because it can prevent us from sleeping.
if (__get_FPSCR() & ~(0x9f)) {
__set_FPSCR(__get_FPSCR() & ~(0x9f));
(void)__get_FPSCR();
}
common_hal_mcu_disable_interrupts();
if (!background_callback_pending()) {
#if IMXRT11XX
NVIC_ClearPendingIRQ(SNVS_HP_NON_TZ_IRQn);
#else
NVIC_ClearPendingIRQ(SNVS_HP_WRAPPER_IRQn);
#endif
__WFI();
}
common_hal_mcu_enable_interrupts();
}
// Catch faults where the memory access violates MPU settings.
void MemManage_Handler(void);
__attribute__((used)) void PLACE_IN_ITCM(MemManage_Handler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}
void BusFault_Handler(void);
__attribute__((used)) void PLACE_IN_ITCM(BusFault_Handler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}
void UsageFault_Handler(void);
__attribute__((used)) void PLACE_IN_ITCM(UsageFault_Handler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}
// Default fault handler.
void HardFault_Handler(void);
__attribute__((used)) void PLACE_IN_ITCM(HardFault_Handler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}
// Catch access errors to FlexRAM (if the MPU didn't catch it first.)
void FLEXRAM_IRQHandler(void);
__attribute__((used)) void PLACE_IN_ITCM(FLEXRAM_IRQHandler)(void) {
reset_into_safe_mode(SAFE_MODE_HARD_FAULT);
while (true) {
asm ("nop;");
}
}