circuitpython/ports/stm32/main.c
Damien George c73360bfdb stm32: Allow to build a board without any hardware I2C ports defined.
This patch adds in internal config value MICROPY_HW_ENABLE_HW_I2C that is
automatically configured, and enabled only if one or more hardware I2C
ports are defined in the mpconfigboard.h file.  If none are defined then
the pyb.I2C class is excluded from the build, along with all supporting
code.  The machine.I2C class will still be available for software I2C.

Disabling all hardware I2C on an F4 board saves around 10,000 bytes of code
and 200 bytes of RAM.
2017-12-22 15:20:42 +11:00

708 lines
21 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/stackctrl.h"
#include "py/gc.h"
#include "py/mphal.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "systick.h"
#include "pendsv.h"
#include "pybthread.h"
#include "gccollect.h"
#include "modmachine.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "timer.h"
#include "led.h"
#include "pin.h"
#include "extint.h"
#include "usrsw.h"
#include "usb.h"
#include "rtc.h"
#include "storage.h"
#include "sdcard.h"
#include "rng.h"
#include "accel.h"
#include "servo.h"
#include "dac.h"
#include "can.h"
#include "modnetwork.h"
void SystemClock_Config(void);
pyb_thread_t pyb_thread_main;
fs_user_mount_t fs_user_mount_flash;
void flash_error(int n) {
for (int i = 0; i < n; i++) {
led_state(PYB_LED_RED, 1);
led_state(PYB_LED_GREEN, 0);
mp_hal_delay_ms(250);
led_state(PYB_LED_RED, 0);
led_state(PYB_LED_GREEN, 1);
mp_hal_delay_ms(250);
}
led_state(PYB_LED_GREEN, 0);
}
void NORETURN __fatal_error(const char *msg) {
for (volatile uint delay = 0; delay < 10000000; delay++) {
}
led_state(1, 1);
led_state(2, 1);
led_state(3, 1);
led_state(4, 1);
mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
mp_hal_stdout_tx_strn(msg, strlen(msg));
for (uint i = 0;;) {
led_toggle(((i++) & 3) + 1);
for (volatile uint delay = 0; delay < 10000000; delay++) {
}
if (i >= 16) {
// to conserve power
__WFI();
}
}
}
void nlr_jump_fail(void *val) {
printf("FATAL: uncaught exception %p\n", val);
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)val);
__fatal_error("");
}
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
(void)func;
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("");
}
#endif
STATIC mp_obj_t pyb_main(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
};
if (MP_OBJ_IS_STR(pos_args[0])) {
MP_STATE_PORT(pyb_config_main) = pos_args[0];
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
MP_STATE_VM(mp_optimise_value) = args[0].u_int;
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);
static const char fresh_boot_py[] =
"# boot.py -- run on boot-up\r\n"
"# can run arbitrary Python, but best to keep it minimal\r\n"
"\r\n"
"import machine\r\n"
"import pyb\r\n"
"#pyb.main('main.py') # main script to run after this one\r\n"
"#pyb.usb_mode('VCP+MSC') # act as a serial and a storage device\r\n"
"#pyb.usb_mode('VCP+HID') # act as a serial device and a mouse\r\n"
;
static const char fresh_main_py[] =
"# main.py -- put your code here!\r\n"
;
static const char fresh_pybcdc_inf[] =
#include "genhdr/pybcdc_inf.h"
;
static const char fresh_readme_txt[] =
"This is a MicroPython board\r\n"
"\r\n"
"You can get started right away by writing your Python code in 'main.py'.\r\n"
"\r\n"
"For a serial prompt:\r\n"
" - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n"
" then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n"
" Then use a terminal program like Hyperterminal or putty.\r\n"
" - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n"
" - Linux: use the command: screen /dev/ttyACM0\r\n"
"\r\n"
"Please visit http://micropython.org/help/ for further help.\r\n"
;
// avoid inlining to avoid stack usage within main()
MP_NOINLINE STATIC bool init_flash_fs(uint reset_mode) {
// init the vfs object
fs_user_mount_t *vfs_fat = &fs_user_mount_flash;
vfs_fat->flags = 0;
pyb_flash_init_vfs(vfs_fat);
// try to mount the flash
FRESULT res = f_mount(&vfs_fat->fatfs);
if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
// no filesystem, or asked to reset it, so create a fresh one
// LED on to indicate creation of LFS
led_state(PYB_LED_GREEN, 1);
uint32_t start_tick = HAL_GetTick();
uint8_t working_buf[_MAX_SS];
res = f_mkfs(&vfs_fat->fatfs, FM_FAT, 0, working_buf, sizeof(working_buf));
if (res == FR_OK) {
// success creating fresh LFS
} else {
printf("PYB: can't create flash filesystem\n");
return false;
}
// set label
f_setlabel(&vfs_fat->fatfs, "pybflash");
// create empty main.py
FIL fp;
f_open(&vfs_fat->fatfs, &fp, "/main.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
// TODO check we could write n bytes
f_close(&fp);
// create .inf driver file
f_open(&vfs_fat->fatfs, &fp, "/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
f_close(&fp);
// create readme file
f_open(&vfs_fat->fatfs, &fp, "/README.txt", FA_WRITE | FA_CREATE_ALWAYS);
f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n);
f_close(&fp);
// keep LED on for at least 200ms
sys_tick_wait_at_least(start_tick, 200);
led_state(PYB_LED_GREEN, 0);
} else if (res == FR_OK) {
// mount sucessful
} else {
fail:
printf("PYB: can't mount flash\n");
return false;
}
// mount the flash device (there should be no other devices mounted at this point)
// we allocate this structure on the heap because vfs->next is a root pointer
mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t);
if (vfs == NULL) {
goto fail;
}
vfs->str = "/flash";
vfs->len = 6;
vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
vfs->next = NULL;
MP_STATE_VM(vfs_mount_table) = vfs;
// The current directory is used as the boot up directory.
// It is set to the internal flash filesystem by default.
MP_STATE_PORT(vfs_cur) = vfs;
// Make sure we have a /flash/boot.py. Create it if needed.
FILINFO fno;
res = f_stat(&vfs_fat->fatfs, "/boot.py", &fno);
if (res != FR_OK) {
// doesn't exist, create fresh file
// LED on to indicate creation of boot.py
led_state(PYB_LED_GREEN, 1);
uint32_t start_tick = HAL_GetTick();
FIL fp;
f_open(&vfs_fat->fatfs, &fp, "/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
// TODO check we could write n bytes
f_close(&fp);
// keep LED on for at least 200ms
sys_tick_wait_at_least(start_tick, 200);
led_state(PYB_LED_GREEN, 0);
}
return true;
}
#if MICROPY_HW_HAS_SDCARD
STATIC bool init_sdcard_fs(bool first_soft_reset) {
bool first_part = true;
for (int part_num = 1; part_num <= 4; ++part_num) {
// create vfs object
fs_user_mount_t *vfs_fat = m_new_obj_maybe(fs_user_mount_t);
mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t);
if (vfs == NULL || vfs_fat == NULL) {
break;
}
vfs_fat->flags = FSUSER_FREE_OBJ;
sdcard_init_vfs(vfs_fat, part_num);
// try to mount the partition
FRESULT res = f_mount(&vfs_fat->fatfs);
if (res != FR_OK) {
// couldn't mount
m_del_obj(fs_user_mount_t, vfs_fat);
m_del_obj(mp_vfs_mount_t, vfs);
} else {
// mounted via FatFs, now mount the SD partition in the VFS
if (first_part) {
// the first available partition is traditionally called "sd" for simplicity
vfs->str = "/sd";
vfs->len = 3;
} else {
// subsequent partitions are numbered by their index in the partition table
if (part_num == 2) {
vfs->str = "/sd2";
} else if (part_num == 2) {
vfs->str = "/sd3";
} else {
vfs->str = "/sd4";
}
vfs->len = 4;
}
vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
vfs->next = NULL;
for (mp_vfs_mount_t **m = &MP_STATE_VM(vfs_mount_table);; m = &(*m)->next) {
if (*m == NULL) {
*m = vfs;
break;
}
}
if (first_soft_reset) {
// use SD card as medium for the USB MSD
#if defined(USE_DEVICE_MODE)
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD;
#endif
}
#if defined(USE_DEVICE_MODE)
// only use SD card as current directory if that's what the USB medium is
if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD)
#endif
{
if (first_part) {
// use SD card as current directory
MP_STATE_PORT(vfs_cur) = vfs;
}
}
first_part = false;
}
}
if (first_part) {
printf("PYB: can't mount SD card\n");
return false;
} else {
return true;
}
}
#endif
STATIC uint update_reset_mode(uint reset_mode) {
#if MICROPY_HW_HAS_SWITCH
if (switch_get()) {
// The original method used on the pyboard is appropriate if you have 2
// or more LEDs.
#if defined(MICROPY_HW_LED2)
for (uint i = 0; i < 3000; i++) {
if (!switch_get()) {
break;
}
mp_hal_delay_ms(20);
if (i % 30 == 29) {
if (++reset_mode > 3) {
reset_mode = 1;
}
led_state(2, reset_mode & 1);
led_state(3, reset_mode & 2);
led_state(4, reset_mode & 4);
}
}
// flash the selected reset mode
for (uint i = 0; i < 6; i++) {
led_state(2, 0);
led_state(3, 0);
led_state(4, 0);
mp_hal_delay_ms(50);
led_state(2, reset_mode & 1);
led_state(3, reset_mode & 2);
led_state(4, reset_mode & 4);
mp_hal_delay_ms(50);
}
mp_hal_delay_ms(400);
#elif defined(MICROPY_HW_LED1)
// For boards with only a single LED, we'll flash that LED the
// appropriate number of times, with a pause between each one
for (uint i = 0; i < 10; i++) {
led_state(1, 0);
for (uint j = 0; j < reset_mode; j++) {
if (!switch_get()) {
break;
}
led_state(1, 1);
mp_hal_delay_ms(100);
led_state(1, 0);
mp_hal_delay_ms(200);
}
mp_hal_delay_ms(400);
if (!switch_get()) {
break;
}
if (++reset_mode > 3) {
reset_mode = 1;
}
}
// Flash the selected reset mode
for (uint i = 0; i < 2; i++) {
for (uint j = 0; j < reset_mode; j++) {
led_state(1, 1);
mp_hal_delay_ms(100);
led_state(1, 0);
mp_hal_delay_ms(200);
}
mp_hal_delay_ms(400);
}
#else
#error Need a reset mode update method
#endif
}
#endif
return reset_mode;
}
int main(void) {
// TODO disable JTAG
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
// set the system clock to be HSE
SystemClock_Config();
// enable GPIO clocks
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
__GPIOC_CLK_ENABLE();
__GPIOD_CLK_ENABLE();
#if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
#if defined(__HAL_RCC_DTCMRAMEN_CLK_ENABLE)
// The STM32F746 doesn't really have CCM memory, but it does have DTCM,
// which behaves more or less like normal SRAM.
__HAL_RCC_DTCMRAMEN_CLK_ENABLE();
#elif defined(CCMDATARAM_BASE)
// enable the CCM RAM
__HAL_RCC_CCMDATARAMEN_CLK_ENABLE();
#endif
#endif
#if defined(MICROPY_BOARD_EARLY_INIT)
MICROPY_BOARD_EARLY_INIT();
#endif
// basic sub-system init
#if MICROPY_PY_THREAD
pyb_thread_init(&pyb_thread_main);
#endif
pendsv_init();
led_init();
#if MICROPY_HW_HAS_SWITCH
switch_init0();
#endif
#if defined(USE_DEVICE_MODE)
// default to internal flash being the usb medium
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH;
#endif
int first_soft_reset = true;
soft_reset:
// check if user switch held to select the reset mode
#if defined(MICROPY_HW_LED2)
led_state(1, 0);
led_state(2, 1);
#else
led_state(1, 1);
led_state(2, 0);
#endif
led_state(3, 0);
led_state(4, 0);
uint reset_mode = update_reset_mode(1);
machine_init();
#if MICROPY_HW_ENABLE_RTC
if (first_soft_reset) {
rtc_init_start(false);
}
#endif
// more sub-system init
#if MICROPY_HW_HAS_SDCARD
if (first_soft_reset) {
sdcard_init();
}
#endif
if (first_soft_reset) {
storage_init();
}
// Python threading init
#if MICROPY_PY_THREAD
mp_thread_init();
#endif
// Stack limit should be less than real stack size, so we have a chance
// to recover from limit hit. (Limit is measured in bytes.)
// Note: stack control relies on main thread being initialised above
mp_stack_set_top(&_estack);
mp_stack_set_limit((char*)&_estack - (char*)&_heap_end - 1024);
// GC init
gc_init(&_heap_start, &_heap_end);
#if MICROPY_ENABLE_PYSTACK
static mp_obj_t pystack[384];
mp_pystack_init(pystack, &pystack[384]);
#endif
// MicroPython init
mp_init();
mp_obj_list_init(mp_sys_path, 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
mp_obj_list_init(mp_sys_argv, 0);
// Initialise low-level sub-systems. Here we need to very basic things like
// zeroing out memory and resetting any of the sub-systems. Following this
// we can run Python scripts (eg boot.py), but anything that is configurable
// by boot.py must be set after boot.py is run.
readline_init0();
pin_init0();
extint_init0();
timer_init0();
uart_init0();
// Define MICROPY_HW_UART_REPL to be PYB_UART_6 and define
// MICROPY_HW_UART_REPL_BAUD in your mpconfigboard.h file if you want a
// REPL on a hardware UART as well as on USB VCP
#if defined(MICROPY_HW_UART_REPL)
{
mp_obj_t args[2] = {
MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL),
MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL_BAUD),
};
MP_STATE_PORT(pyb_stdio_uart) = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args);
}
#else
MP_STATE_PORT(pyb_stdio_uart) = NULL;
#endif
#if MICROPY_HW_ENABLE_CAN
can_init0();
#endif
#if MICROPY_HW_ENABLE_RNG
rng_init0();
#endif
#if MICROPY_HW_ENABLE_HW_I2C
i2c_init0();
#endif
spi_init0();
pyb_usb_init0();
// Initialise the local flash filesystem.
// Create it if needed, mount in on /flash, and set it as current dir.
bool mounted_flash = init_flash_fs(reset_mode);
bool mounted_sdcard = false;
#if MICROPY_HW_HAS_SDCARD
// if an SD card is present then mount it on /sd/
if (sdcard_is_present()) {
// if there is a file in the flash called "SKIPSD", then we don't mount the SD card
if (!mounted_flash || f_stat(&fs_user_mount_flash.fatfs, "/SKIPSD", NULL) != FR_OK) {
mounted_sdcard = init_sdcard_fs(first_soft_reset);
}
}
#endif
// set sys.path based on mounted filesystems (/sd is first so it can override /flash)
if (mounted_sdcard) {
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib));
}
if (mounted_flash) {
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
}
// reset config variables; they should be set by boot.py
MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;
// run boot.py, if it exists
// TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py
if (reset_mode == 1 || reset_mode == 3) {
const char *boot_py = "boot.py";
mp_import_stat_t stat = mp_import_stat(boot_py);
if (stat == MP_IMPORT_STAT_FILE) {
int ret = pyexec_file(boot_py);
if (ret & PYEXEC_FORCED_EXIT) {
goto soft_reset_exit;
}
if (!ret) {
flash_error(4);
}
}
}
// turn boot-up LEDs off
#if !defined(MICROPY_HW_LED2)
// If there is only one LED on the board then it's used to signal boot-up
// and so we turn it off here. Otherwise LED(1) is used to indicate dirty
// flash cache and so we shouldn't change its state.
led_state(1, 0);
#endif
led_state(2, 0);
led_state(3, 0);
led_state(4, 0);
// Now we initialise sub-systems that need configuration from boot.py,
// or whose initialisation can be safely deferred until after running
// boot.py.
#if defined(USE_DEVICE_MODE)
// init USB device to default setting if it was not already configured
if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) {
pyb_usb_dev_init(USBD_VID, USBD_PID_CDC_MSC, USBD_MODE_CDC_MSC, NULL);
}
#endif
#if MICROPY_HW_HAS_MMA7660
// MMA accel: init and reset
accel_init();
#endif
#if MICROPY_HW_ENABLE_SERVO
// servo
servo_init();
#endif
#if MICROPY_HW_ENABLE_DAC
// DAC
dac_init();
#endif
#if MICROPY_PY_NETWORK
mod_network_init();
#endif
// At this point everything is fully configured and initialised.
// Run the main script from the current directory.
if ((reset_mode == 1 || reset_mode == 3) && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
const char *main_py;
if (MP_STATE_PORT(pyb_config_main) == MP_OBJ_NULL) {
main_py = "main.py";
} else {
main_py = mp_obj_str_get_str(MP_STATE_PORT(pyb_config_main));
}
mp_import_stat_t stat = mp_import_stat(main_py);
if (stat == MP_IMPORT_STAT_FILE) {
int ret = pyexec_file(main_py);
if (ret & PYEXEC_FORCED_EXIT) {
goto soft_reset_exit;
}
if (!ret) {
flash_error(3);
}
}
}
// Main script is finished, so now go into REPL mode.
// The REPL mode can change, or it can request a soft reset.
for (;;) {
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
if (pyexec_raw_repl() != 0) {
break;
}
} else {
if (pyexec_friendly_repl() != 0) {
break;
}
}
}
soft_reset_exit:
// soft reset
printf("PYB: sync filesystems\n");
storage_flush();
printf("PYB: soft reboot\n");
timer_deinit();
uart_deinit();
#if MICROPY_HW_ENABLE_CAN
can_deinit();
#endif
#if MICROPY_PY_THREAD
pyb_thread_deinit();
#endif
first_soft_reset = false;
goto soft_reset;
}