circuitpython/py/objint.c

272 lines
8.3 KiB
C

#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <string.h>
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "parsenum.h"
#include "mpz.h"
#include "objint.h"
#include "runtime0.h"
#include "runtime.h"
#if MICROPY_ENABLE_FLOAT
#include <math.h>
#endif
// This dispatcher function is expected to be independent of the implementation of long int
STATIC mp_obj_t mp_obj_int_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO check n_kw == 0
switch (n_args) {
case 0:
return MP_OBJ_NEW_SMALL_INT(0);
case 1:
if (MP_OBJ_IS_STR(args[0])) {
// a string, parse it
uint l;
const char *s = mp_obj_str_get_data(args[0], &l);
return mp_parse_num_integer(s, l, 0);
#if MICROPY_ENABLE_FLOAT
} else if (MP_OBJ_IS_TYPE(args[0], &mp_type_float)) {
return MP_OBJ_NEW_SMALL_INT((machine_int_t)(MICROPY_FLOAT_C_FUN(trunc)(mp_obj_float_get(args[0]))));
#endif
} else {
return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0]));
}
case 2:
{
// should be a string, parse it
// TODO proper error checking of argument types
uint l;
const char *s = mp_obj_str_get_data(args[0], &l);
return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]));
}
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "int takes at most 2 arguments, %d given", n_args));
}
}
void mp_obj_int_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
// The size of this buffer is rather arbitrary. If it's not large
// enough, a dynamic one will be allocated.
char stack_buf[sizeof(machine_int_t) * 4];
char *buf = stack_buf;
int buf_size = sizeof(stack_buf);
int fmt_size;
char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
print(env, "%s", str);
if (buf != stack_buf) {
m_free(buf, buf_size);
}
}
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE || MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
typedef mp_longint_impl_t fmt_int_t;
#else
typedef mp_small_int_t fmt_int_t;
#endif
static const uint log_base2_floor[] = {
0,
0, 1, 1, 2,
2, 2, 2, 3,
3, 3, 3, 3,
3, 3, 3, 4,
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 5
};
uint int_as_str_size_formatted(uint base, const char *prefix, char comma) {
if (base < 2 || base > 32) {
return 0;
}
uint num_digits = sizeof(fmt_int_t) * 8 / log_base2_floor[base] + 1;
uint num_commas = comma ? num_digits / 3: 0;
uint prefix_len = prefix ? strlen(prefix) : 0;
return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
}
// This routine expects you to pass in a buffer and size (in *buf and buf_size).
// If, for some reason, this buffer is too small, then it will allocate a
// buffer and return the allocated buffer and size in *buf and *buf_size. It
// is the callers responsibility to free this allocated buffer.
//
// The resulting formatted string will be returned from this function and the
// formatted size will be in *fmt_size.
char *mp_obj_int_formatted(char **buf, int *buf_size, int *fmt_size, mp_obj_t self_in,
int base, const char *prefix, char base_char, char comma) {
if (!MP_OBJ_IS_INT(self_in)) {
buf[0] = '\0';
*fmt_size = 0;
return *buf;
}
fmt_int_t num;
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
mp_obj_int_t *self = self_in;
if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) {
// mp_obj_get_int truncates to machine_int_t
num = self->val;
} else
#endif
{
num = mp_obj_get_int(self_in);
}
char sign = '\0';
if (num < 0) {
num = -num;
sign = '-';
}
uint needed_size = int_as_str_size_formatted(base, prefix, comma);
if (needed_size > *buf_size) {
*buf = m_new(char, needed_size);
*buf_size = needed_size;
}
char *str = *buf;
char *b = str + needed_size;
*(--b) = '\0';
char *last_comma = b;
if (num == 0) {
*(--b) = '0';
} else {
do {
int c = num % base;
num /= base;
if (c >= 10) {
c += base_char - 10;
} else {
c += '0';
}
*(--b) = c;
if (comma && num != 0 && b > str && (last_comma - b) == 3) {
*(--b) = comma;
last_comma = b;
}
}
while (b > str && num != 0);
}
if (prefix) {
size_t prefix_len = strlen(prefix);
char *p = b - prefix_len;
if (p > str) {
b = p;
while (*prefix) {
*p++ = *prefix++;
}
}
}
if (sign && b > str) {
*(--b) = sign;
}
*fmt_size = *buf + needed_size - b - 1;
return b;
}
bool mp_obj_int_is_positive(mp_obj_t self_in) {
return mp_obj_get_int(self_in) >= 0;
}
#endif // LONGLONG or NONE
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
// This is called for operations on SMALL_INT that are not handled by mp_unary_op
mp_obj_t mp_obj_int_unary_op(int op, mp_obj_t o_in) {
return MP_OBJ_NULL;
}
// This is called for operations on SMALL_INT that are not handled by mp_binary_op
mp_obj_t mp_obj_int_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
}
// This is called only with strings whose value doesn't fit in SMALL_INT
mp_obj_t mp_obj_new_int_from_long_str(const char *s) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "long int not supported in this build"));
return mp_const_none;
}
// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
mp_obj_t mp_obj_new_int_from_ll(long long val) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
return mp_const_none;
}
mp_obj_t mp_obj_new_int_from_uint(machine_uint_t value) {
// SMALL_INT accepts only signed numbers, of one bit less size
// then word size, which totals 2 bits less for unsigned numbers.
if ((value & (WORD_MSBIT_HIGH | (WORD_MSBIT_HIGH >> 1))) == 0) {
return MP_OBJ_NEW_SMALL_INT(value);
}
nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
return mp_const_none;
}
mp_obj_t mp_obj_new_int(machine_int_t value) {
if (MP_OBJ_FITS_SMALL_INT(value)) {
return MP_OBJ_NEW_SMALL_INT(value);
}
nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
return mp_const_none;
}
machine_int_t mp_obj_int_get(mp_obj_t self_in) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
}
machine_int_t mp_obj_int_get_checked(mp_obj_t self_in) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
}
#if MICROPY_ENABLE_FLOAT
mp_float_t mp_obj_int_as_float(mp_obj_t self_in) {
return MP_OBJ_SMALL_INT_VALUE(self_in);
}
#endif
#endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE
// This dispatcher function is expected to be independent of the implementation of long int
// It handles the extra cases for integer-like arithmetic
mp_obj_t mp_obj_int_binary_op_extra_cases(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
if (rhs_in == mp_const_false) {
// false acts as 0
return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
} else if (rhs_in == mp_const_true) {
// true acts as 0
return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
} else if (op == MP_BINARY_OP_MULTIPLY) {
if (MP_OBJ_IS_STR(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) {
// multiply is commutative for these types, so delegate to them
return mp_binary_op(op, rhs_in, lhs_in);
}
}
return MP_OBJ_NULL;
}
const mp_obj_type_t mp_type_int = {
{ &mp_type_type },
.name = MP_QSTR_int,
.print = mp_obj_int_print,
.make_new = mp_obj_int_make_new,
.unary_op = mp_obj_int_unary_op,
.binary_op = mp_obj_int_binary_op,
};