circuitpython/ports/esp32/machine_bitstream.c
Simon Baatz 79ae7098ca esp32/machine_bitstream: Fix signal duplication on output pins.
After changing the bitstream implementation to use the RMT driver in
commit 72d86158121e32bbabaeade08f449d507bf40f9a
("esp32/machine_bitstream.c: Replace with RMT-based driver."), using
multiple `Neopixel` instances shows signal duplication between the
instances (i.e. a `write()` on one instance is written to all instances).

On invocation, the rmt driver configures the GPIO matrix to route the
output signal to the respective GPIO pin.  When called for a different
`NeoPixel` instance using a different pin, the new route is established,
but the old route still exists.  Now, the RMT output signal is sent to both
pins.

Fix this by setting the standard GPIO output function for the current pin
after uninstalling the RMT driver.

Signed-off-by: Simon Baatz <gmbnomis@gmail.com>
2022-01-06 13:21:37 +11:00

142 lines
5.6 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Jim Mussared
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mpconfig.h"
#include "py/mphal.h"
#if MICROPY_PY_MACHINE_BITSTREAM
#include "driver/rmt.h"
#include "modesp32.h"
#if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4, 1, 0)
// This convenience macro was not available in earlier IDF versions.
#define RMT_DEFAULT_CONFIG_TX(gpio, channel_id) \
{ \
.rmt_mode = RMT_MODE_TX, \
.channel = channel_id, \
.clk_div = 80, \
.gpio_num = gpio, \
.mem_block_num = 1, \
.tx_config = { \
.loop_en = false, \
.carrier_freq_hz = 38000, \
.carrier_duty_percent = 33, \
.carrier_level = RMT_CARRIER_LEVEL_HIGH, \
.carrier_en = false, \
.idle_level = RMT_IDLE_LEVEL_LOW, \
.idle_output_en = true, \
} \
}
#endif
// Logical 0 and 1 values (encoded as a rmt_item32_t).
// The duration fields will be set later.
STATIC rmt_item32_t bitstream_high_low_0 = {{{ 0, 1, 0, 0 }}};
STATIC rmt_item32_t bitstream_high_low_1 = {{{ 0, 1, 0, 0 }}};
// See https://github.com/espressif/esp-idf/blob/master/examples/common_components/led_strip/led_strip_rmt_ws2812.c
// This is called automatically by the IDF during rmt_write_sample in order to
// convert the byte stream to rmt_item32_t's.
STATIC void IRAM_ATTR bitstream_high_low_rmt_adapter(const void *src, rmt_item32_t *dest, size_t src_size, size_t wanted_num, size_t *translated_size, size_t *item_num) {
if (src == NULL || dest == NULL) {
*translated_size = 0;
*item_num = 0;
return;
}
size_t size = 0;
size_t num = 0;
uint8_t *psrc = (uint8_t *)src;
rmt_item32_t *pdest = dest;
while (size < src_size && num < wanted_num) {
for (int i = 0; i < 8; i++) {
// MSB first
if (*psrc & (1 << (7 - i))) {
pdest->val = bitstream_high_low_1.val;
} else {
pdest->val = bitstream_high_low_0.val;
}
num++;
pdest++;
}
size++;
psrc++;
}
*translated_size = size;
*item_num = num;
}
// Use the reserved RMT channel to stream high/low data on the specified pin.
void machine_bitstream_high_low(mp_hal_pin_obj_t pin, uint32_t *timing_ns, const uint8_t *buf, size_t len) {
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, MICROPY_HW_ESP32_RMT_CHANNEL_BITSTREAM);
// Use 40MHz clock (although 2MHz would probably be sufficient).
config.clk_div = 2;
// Install the driver on this channel & pin.
check_esp_err(rmt_config(&config));
check_esp_err(rmt_driver_install(config.channel, 0, 0));
// Get the tick rate in kHz (this will likely be 40000).
uint32_t counter_clk_khz = 0;
#if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4, 1, 0)
uint8_t div_cnt;
check_esp_err(rmt_get_clk_div(config.channel, &div_cnt));
counter_clk_khz = APB_CLK_FREQ / div_cnt;
#else
check_esp_err(rmt_get_counter_clock(config.channel, &counter_clk_khz));
#endif
counter_clk_khz /= 1000;
// Convert nanoseconds to pulse duration.
bitstream_high_low_0.duration0 = (counter_clk_khz * timing_ns[0]) / 1e6;
bitstream_high_low_0.duration1 = (counter_clk_khz * timing_ns[1]) / 1e6;
bitstream_high_low_1.duration0 = (counter_clk_khz * timing_ns[2]) / 1e6;
bitstream_high_low_1.duration1 = (counter_clk_khz * timing_ns[3]) / 1e6;
// Install the bits->highlow translator.
rmt_translator_init(config.channel, bitstream_high_low_rmt_adapter);
// Stream the byte data using the translator.
check_esp_err(rmt_write_sample(config.channel, buf, len, true));
// Wait 50% longer than we expect (if every bit takes the maximum time).
uint32_t timeout_ms = (3 * len / 2) * (1 + (8 * MAX(timing_ns[0] + timing_ns[1], timing_ns[2] + timing_ns[3])) / 1000);
check_esp_err(rmt_wait_tx_done(config.channel, pdMS_TO_TICKS(timeout_ms)));
// Uninstall the driver.
check_esp_err(rmt_driver_uninstall(config.channel));
// Cancel RMT output to GPIO pin.
gpio_matrix_out(pin, SIG_GPIO_OUT_IDX, false, false);
}
#endif // MICROPY_PY_MACHINE_BITSTREAM