Damien George cb3456ddfe stm32: Don't use %lu or %lx for formatting, use just %u or %x.
On this 32-bit arch there's no need to use the long version of the format
specifier.  It's only there to appease the compiler which checks the type
of the args passed to printf.  Removing the "l" saves a bit of code space.
2018-05-04 15:52:03 +10:00

789 lines
28 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/binary.h"
#include "py/mphal.h"
#include "adc.h"
#include "pin.h"
#include "timer.h"
#if MICROPY_HW_ENABLE_ADC
/// \moduleref pyb
/// \class ADC - analog to digital conversion: read analog values on a pin
///
/// Usage:
///
/// adc = pyb.ADC(pin) # create an analog object from a pin
/// val = adc.read() # read an analog value
///
/// adc = pyb.ADCAll(resolution) # creale an ADCAll object
/// val = adc.read_channel(channel) # read the given channel
/// val = adc.read_core_temp() # read MCU temperature
/// val = adc.read_core_vbat() # read MCU VBAT
/// val = adc.read_core_vref() # read MCU VREF
/* ADC defintions */
#if defined(STM32H7)
#define ADCx (ADC3)
#else
#define ADCx (ADC1)
#endif
#define ADCx_CLK_ENABLE __HAL_RCC_ADC1_CLK_ENABLE
#define ADC_NUM_CHANNELS (19)
#if defined(STM32F4)
#define ADC_FIRST_GPIO_CHANNEL (0)
#define ADC_LAST_GPIO_CHANNEL (15)
#define ADC_CAL_ADDRESS (0x1fff7a2a)
#define ADC_CAL1 ((uint16_t*)(ADC_CAL_ADDRESS + 2))
#define ADC_CAL2 ((uint16_t*)(ADC_CAL_ADDRESS + 4))
#elif defined(STM32F7)
#define ADC_FIRST_GPIO_CHANNEL (0)
#define ADC_LAST_GPIO_CHANNEL (15)
#if defined(STM32F722xx) || defined(STM32F723xx) || \
defined(STM32F732xx) || defined(STM32F733xx)
#define ADC_CAL_ADDRESS (0x1ff07a2a)
#else
#define ADC_CAL_ADDRESS (0x1ff0f44a)
#endif
#define ADC_CAL1 ((uint16_t*)(ADC_CAL_ADDRESS + 2))
#define ADC_CAL2 ((uint16_t*)(ADC_CAL_ADDRESS + 4))
#elif defined(STM32H7)
#define ADC_FIRST_GPIO_CHANNEL (0)
#define ADC_LAST_GPIO_CHANNEL (16)
#define ADC_CAL_ADDRESS (0x1FF1E860)
#define ADC_CAL1 ((uint16_t*)(0x1FF1E820))
#define ADC_CAL2 ((uint16_t*)(0x1FF1E840))
#define ADC_CHANNEL_VBAT ADC_CHANNEL_VBAT_DIV4
#elif defined(STM32L4)
#define ADC_FIRST_GPIO_CHANNEL (1)
#define ADC_LAST_GPIO_CHANNEL (16)
#define ADC_CAL_ADDRESS (0x1fff75aa)
#define ADC_CAL1 ((uint16_t*)(ADC_CAL_ADDRESS - 2))
#define ADC_CAL2 ((uint16_t*)(ADC_CAL_ADDRESS + 0x20))
#else
#error Unsupported processor
#endif
#if defined(STM32F405xx) || defined(STM32F415xx) || \
defined(STM32F407xx) || defined(STM32F417xx) || \
defined(STM32F401xC) || defined(STM32F401xE) || \
defined(STM32F411xE)
#define VBAT_DIV (2)
#elif defined(STM32F427xx) || defined(STM32F429xx) || \
defined(STM32F437xx) || defined(STM32F439xx) || \
defined(STM32F722xx) || defined(STM32F723xx) || \
defined(STM32F732xx) || defined(STM32F733xx) || \
defined(STM32F746xx) || defined(STM32F767xx) || \
defined(STM32F769xx) || defined(STM32F446xx)
#define VBAT_DIV (4)
#elif defined(STM32H743xx)
#define VBAT_DIV (4)
#elif defined(STM32L475xx) || defined(STM32L476xx)
#define VBAT_DIV (3)
#else
#error Unsupported processor
#endif
// Timeout for waiting for end-of-conversion, in ms
#define EOC_TIMEOUT (10)
/* Core temperature sensor definitions */
#define CORE_TEMP_V25 (943) /* (0.76v/3.3v)*(2^ADC resoultion) */
#define CORE_TEMP_AVG_SLOPE (3) /* (2.5mv/3.3v)*(2^ADC resoultion) */
// scale and calibration values for VBAT and VREF
#define ADC_SCALE (3.3f / 4095)
#define VREFIN_CAL ((uint16_t *)ADC_CAL_ADDRESS)
typedef struct _pyb_obj_adc_t {
mp_obj_base_t base;
mp_obj_t pin_name;
int channel;
ADC_HandleTypeDef handle;
} pyb_obj_adc_t;
// convert user-facing channel number into internal channel number
static inline uint32_t adc_get_internal_channel(uint32_t channel) {
#if defined(STM32F4) || defined(STM32F7)
// on F4 and F7 MCUs we want channel 16 to always be the TEMPSENSOR
// (on some MCUs ADC_CHANNEL_TEMPSENSOR=16, on others it doesn't)
if (channel == 16) {
channel = ADC_CHANNEL_TEMPSENSOR;
}
#endif
return channel;
}
STATIC bool is_adcx_channel(int channel) {
#if defined(STM32F411xE)
// The HAL has an incorrect IS_ADC_CHANNEL macro for the F411 so we check for temp
return IS_ADC_CHANNEL(channel) || channel == ADC_CHANNEL_TEMPSENSOR;
#elif defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
return IS_ADC_CHANNEL(channel);
#elif defined(STM32L4)
ADC_HandleTypeDef handle;
handle.Instance = ADCx;
return IS_ADC_CHANNEL(&handle, channel);
#else
#error Unsupported processor
#endif
}
STATIC void adc_wait_for_eoc_or_timeout(int32_t timeout) {
uint32_t tickstart = HAL_GetTick();
#if defined(STM32F4) || defined(STM32F7)
while ((ADCx->SR & ADC_FLAG_EOC) != ADC_FLAG_EOC) {
#elif defined(STM32H7) || defined(STM32L4)
while (READ_BIT(ADCx->ISR, ADC_FLAG_EOC) != ADC_FLAG_EOC) {
#else
#error Unsupported processor
#endif
if (((HAL_GetTick() - tickstart ) > timeout)) {
break; // timeout
}
}
}
STATIC void adcx_clock_enable(void) {
#if defined(STM32F4) || defined(STM32F7)
ADCx_CLK_ENABLE();
#elif defined(STM32H7)
__HAL_RCC_ADC3_CLK_ENABLE();
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_CLKP);
#elif defined(STM32L4)
__HAL_RCC_ADC_CLK_ENABLE();
#else
#error Unsupported processor
#endif
}
STATIC void adcx_init_periph(ADC_HandleTypeDef *adch, uint32_t resolution) {
adcx_clock_enable();
adch->Instance = ADCx;
adch->Init.Resolution = resolution;
adch->Init.ContinuousConvMode = DISABLE;
adch->Init.DiscontinuousConvMode = DISABLE;
adch->Init.NbrOfDiscConversion = 0;
adch->Init.NbrOfConversion = 1;
adch->Init.EOCSelection = ADC_EOC_SINGLE_CONV;
adch->Init.ExternalTrigConv = ADC_SOFTWARE_START;
adch->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
#if defined(STM32F4) || defined(STM32F7)
adch->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
adch->Init.ScanConvMode = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
#elif defined(STM32H7)
adch->Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
adch->Init.BoostMode = ENABLE;
adch->Init.ScanConvMode = DISABLE;
adch->Init.LowPowerAutoWait = DISABLE;
adch->Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
adch->Init.OversamplingMode = DISABLE;
adch->Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
adch->Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
#elif defined(STM32L4)
adch->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
adch->Init.ScanConvMode = ADC_SCAN_DISABLE;
adch->Init.LowPowerAutoWait = DISABLE;
adch->Init.Overrun = ADC_OVR_DATA_PRESERVED;
adch->Init.OversamplingMode = DISABLE;
adch->Init.DataAlign = ADC_DATAALIGN_RIGHT;
adch->Init.DMAContinuousRequests = DISABLE;
#else
#error Unsupported processor
#endif
HAL_ADC_Init(adch);
#if defined(STM32H7)
HAL_ADCEx_Calibration_Start(adch, ADC_CALIB_OFFSET, ADC_SINGLE_ENDED);
#endif
}
STATIC void adc_init_single(pyb_obj_adc_t *adc_obj) {
if (!is_adcx_channel(adc_obj->channel)) {
return;
}
if (ADC_FIRST_GPIO_CHANNEL <= adc_obj->channel && adc_obj->channel <= ADC_LAST_GPIO_CHANNEL) {
// Channels 0-16 correspond to real pins. Configure the GPIO pin in ADC mode.
const pin_obj_t *pin = pin_adc1[adc_obj->channel];
mp_hal_pin_config(pin, MP_HAL_PIN_MODE_ADC, MP_HAL_PIN_PULL_NONE, 0);
}
adcx_init_periph(&adc_obj->handle, ADC_RESOLUTION_12B);
#if defined(STM32L4)
ADC_MultiModeTypeDef multimode;
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&adc_obj->handle, &multimode) != HAL_OK)
{
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Can not set multimode on ADC1 channel: %d", adc_obj->channel));
}
#endif
}
STATIC void adc_config_channel(ADC_HandleTypeDef *adc_handle, uint32_t channel) {
ADC_ChannelConfTypeDef sConfig;
sConfig.Channel = channel;
sConfig.Rank = 1;
#if defined(STM32F4) || defined(STM32F7)
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
#elif defined(STM32H7)
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.OffsetRightShift = DISABLE;
sConfig.OffsetSignedSaturation = DISABLE;
#elif defined(STM32L4)
sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
#else
#error Unsupported processor
#endif
sConfig.Offset = 0;
HAL_ADC_ConfigChannel(adc_handle, &sConfig);
}
STATIC uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) {
HAL_ADC_Start(adcHandle);
adc_wait_for_eoc_or_timeout(EOC_TIMEOUT);
uint32_t value = ADCx->DR;
HAL_ADC_Stop(adcHandle);
return value;
}
STATIC uint32_t adc_config_and_read_channel(ADC_HandleTypeDef *adcHandle, uint32_t channel) {
adc_config_channel(adcHandle, channel);
return adc_read_channel(adcHandle);
}
/******************************************************************************/
/* MicroPython bindings : adc object (single channel) */
STATIC void adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_obj_adc_t *self = self_in;
mp_print_str(print, "<ADC on ");
mp_obj_print_helper(print, self->pin_name, PRINT_STR);
mp_printf(print, " channel=%u>", self->channel);
}
/// \classmethod \constructor(pin)
/// Create an ADC object associated with the given pin.
/// This allows you to then read analog values on that pin.
STATIC mp_obj_t adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// 1st argument is the pin name
mp_obj_t pin_obj = args[0];
uint32_t channel;
if (MP_OBJ_IS_INT(pin_obj)) {
channel = adc_get_internal_channel(mp_obj_get_int(pin_obj));
} else {
const pin_obj_t *pin = pin_find(pin_obj);
if ((pin->adc_num & PIN_ADC1) == 0) {
// No ADC1 function on that pin
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q does not have ADC capabilities", pin->name));
}
channel = pin->adc_channel;
}
if (!is_adcx_channel(channel)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "not a valid ADC Channel: %d", channel));
}
if (ADC_FIRST_GPIO_CHANNEL <= channel && channel <= ADC_LAST_GPIO_CHANNEL) {
// these channels correspond to physical GPIO ports so make sure they exist
if (pin_adc1[channel] == NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"channel %d not available on this board", channel));
}
}
pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t);
memset(o, 0, sizeof(*o));
o->base.type = &pyb_adc_type;
o->pin_name = pin_obj;
o->channel = channel;
adc_init_single(o);
return o;
}
/// \method read()
/// Read the value on the analog pin and return it. The returned value
/// will be between 0 and 4095.
STATIC mp_obj_t adc_read(mp_obj_t self_in) {
pyb_obj_adc_t *self = self_in;
return mp_obj_new_int(adc_config_and_read_channel(&self->handle, self->channel));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_read_obj, adc_read);
/// \method read_timed(buf, timer)
///
/// Read analog values into `buf` at a rate set by the `timer` object.
///
/// `buf` can be bytearray or array.array for example. The ADC values have
/// 12-bit resolution and are stored directly into `buf` if its element size is
/// 16 bits or greater. If `buf` has only 8-bit elements (eg a bytearray) then
/// the sample resolution will be reduced to 8 bits.
///
/// `timer` should be a Timer object, and a sample is read each time the timer
/// triggers. The timer must already be initialised and running at the desired
/// sampling frequency.
///
/// To support previous behaviour of this function, `timer` can also be an
/// integer which specifies the frequency (in Hz) to sample at. In this case
/// Timer(6) will be automatically configured to run at the given frequency.
///
/// Example using a Timer object (preferred way):
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz
/// buf = bytearray(100) # creat a buffer to store the samples
/// adc.read_timed(buf, tim) # sample 100 values, taking 10s
///
/// Example using an integer for the frequency:
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// buf = bytearray(100) # create a buffer of 100 bytes
/// adc.read_timed(buf, 10) # read analog values into buf at 10Hz
/// # this will take 10 seconds to finish
/// for val in buf: # loop over all values
/// print(val) # print the value out
///
/// This function does not allocate any memory.
STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) {
pyb_obj_adc_t *self = self_in;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
TIM_HandleTypeDef *tim;
#if defined(TIM6)
if (mp_obj_is_integer(freq_in)) {
// freq in Hz given so init TIM6 (legacy behaviour)
tim = timer_tim6_init(mp_obj_get_int(freq_in));
HAL_TIM_Base_Start(tim);
} else
#endif
{
// use the supplied timer object as the sampling time base
tim = pyb_timer_get_handle(freq_in);
}
// configure the ADC channel
adc_config_channel(&self->handle, self->channel);
// This uses the timer in polling mode to do the sampling
// TODO use DMA
uint nelems = bufinfo.len / typesize;
for (uint index = 0; index < nelems; index++) {
// Wait for the timer to trigger so we sample at the correct frequency
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
if (index == 0) {
// for the first sample we need to turn the ADC on
HAL_ADC_Start(&self->handle);
} else {
// for subsequent samples we can just set the "start sample" bit
#if defined(STM32F4) || defined(STM32F7)
ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART;
#elif defined(STM32H7) || defined(STM32L4)
SET_BIT(ADCx->CR, ADC_CR_ADSTART);
#else
#error Unsupported processor
#endif
}
// wait for sample to complete
adc_wait_for_eoc_or_timeout(EOC_TIMEOUT);
// read value
uint value = ADCx->DR;
// store value in buffer
if (typesize == 1) {
value >>= 4;
}
mp_binary_set_val_array_from_int(bufinfo.typecode, bufinfo.buf, index, value);
}
// turn the ADC off
HAL_ADC_Stop(&self->handle);
#if defined(TIM6)
if (mp_obj_is_integer(freq_in)) {
// stop timer if we initialised TIM6 in this function (legacy behaviour)
HAL_TIM_Base_Stop(tim);
}
#endif
return mp_obj_new_int(bufinfo.len);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_obj, adc_read_timed);
// read_timed_multi((adcx, adcy, ...), (bufx, bufy, ...), timer)
//
// Read analog values from multiple ADC's into buffers at a rate set by the
// timer. The ADC values have 12-bit resolution and are stored directly into
// the corresponding buffer if its element size is 16 bits or greater, otherwise
// the sample resolution will be reduced to 8 bits.
//
// This function should not allocate any heap memory.
STATIC mp_obj_t adc_read_timed_multi(mp_obj_t adc_array_in, mp_obj_t buf_array_in, mp_obj_t tim_in) {
size_t nadcs, nbufs;
mp_obj_t *adc_array, *buf_array;
mp_obj_get_array(adc_array_in, &nadcs, &adc_array);
mp_obj_get_array(buf_array_in, &nbufs, &buf_array);
if (nadcs < 1) {
mp_raise_ValueError("need at least 1 ADC");
}
if (nadcs != nbufs) {
mp_raise_ValueError("length of ADC and buffer lists differ");
}
// Get buf for first ADC, get word size, check other buffers match in type
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_array[0], &bufinfo, MP_BUFFER_WRITE);
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
void *bufptrs[nbufs];
for (uint array_index = 0; array_index < nbufs; array_index++) {
mp_buffer_info_t bufinfo_curr;
mp_get_buffer_raise(buf_array[array_index], &bufinfo_curr, MP_BUFFER_WRITE);
if ((bufinfo.len != bufinfo_curr.len) || (bufinfo.typecode != bufinfo_curr.typecode)) {
mp_raise_ValueError("size and type of buffers must match");
}
bufptrs[array_index] = bufinfo_curr.buf;
}
// Use the supplied timer object as the sampling time base
TIM_HandleTypeDef *tim;
tim = pyb_timer_get_handle(tim_in);
// Start adc; this is slow so wait for it to start
pyb_obj_adc_t *adc0 = adc_array[0];
adc_config_channel(&adc0->handle, adc0->channel);
HAL_ADC_Start(&adc0->handle);
// Wait for sample to complete and discard
adc_wait_for_eoc_or_timeout(EOC_TIMEOUT);
// Read (and discard) value
uint value = ADCx->DR;
// Ensure first sample is on a timer tick
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
// Overrun check: assume success
bool success = true;
size_t nelems = bufinfo.len / typesize;
for (size_t elem_index = 0; elem_index < nelems; elem_index++) {
if (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) != RESET) {
// Timer has already triggered
success = false;
} else {
// Wait for the timer to trigger so we sample at the correct frequency
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
for (size_t array_index = 0; array_index < nadcs; array_index++) {
pyb_obj_adc_t *adc = adc_array[array_index];
// configure the ADC channel
adc_config_channel(&adc->handle, adc->channel);
// for the first sample we need to turn the ADC on
// ADC is started: set the "start sample" bit
#if defined(STM32F4) || defined(STM32F7)
ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART;
#elif defined(STM32H7) || defined(STM32L4)
SET_BIT(ADCx->CR, ADC_CR_ADSTART);
#else
#error Unsupported processor
#endif
// wait for sample to complete
adc_wait_for_eoc_or_timeout(EOC_TIMEOUT);
// read value
value = ADCx->DR;
// store values in buffer
if (typesize == 1) {
value >>= 4;
}
mp_binary_set_val_array_from_int(bufinfo.typecode, bufptrs[array_index], elem_index, value);
}
}
// Turn the ADC off
adc0 = adc_array[0];
HAL_ADC_Stop(&adc0->handle);
return mp_obj_new_bool(success);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_multi_fun_obj, adc_read_timed_multi);
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(adc_read_timed_multi_obj, MP_ROM_PTR(&adc_read_timed_multi_fun_obj));
STATIC const mp_rom_map_elem_t adc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&adc_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_timed), MP_ROM_PTR(&adc_read_timed_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_timed_multi), MP_ROM_PTR(&adc_read_timed_multi_obj) },
};
STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table);
const mp_obj_type_t pyb_adc_type = {
{ &mp_type_type },
.name = MP_QSTR_ADC,
.print = adc_print,
.make_new = adc_make_new,
.locals_dict = (mp_obj_dict_t*)&adc_locals_dict,
};
/******************************************************************************/
/* adc all object */
typedef struct _pyb_adc_all_obj_t {
mp_obj_base_t base;
ADC_HandleTypeDef handle;
} pyb_adc_all_obj_t;
void adc_init_all(pyb_adc_all_obj_t *adc_all, uint32_t resolution, uint32_t en_mask) {
switch (resolution) {
#if !defined(STM32H7)
case 6: resolution = ADC_RESOLUTION_6B; break;
#endif
case 8: resolution = ADC_RESOLUTION_8B; break;
case 10: resolution = ADC_RESOLUTION_10B; break;
case 12: resolution = ADC_RESOLUTION_12B; break;
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"resolution %d not supported", resolution));
}
for (uint32_t channel = ADC_FIRST_GPIO_CHANNEL; channel <= ADC_LAST_GPIO_CHANNEL; ++channel) {
// only initialise those channels that are selected with the en_mask
if (en_mask & (1 << channel)) {
// Channels 0-16 correspond to real pins. Configure the GPIO pin in
// ADC mode.
const pin_obj_t *pin = pin_adc1[channel];
if (pin) {
mp_hal_pin_config(pin, MP_HAL_PIN_MODE_ADC, MP_HAL_PIN_PULL_NONE, 0);
}
}
}
adcx_init_periph(&adc_all->handle, resolution);
}
int adc_get_resolution(ADC_HandleTypeDef *adcHandle) {
uint32_t res_reg = ADC_GET_RESOLUTION(adcHandle);
switch (res_reg) {
#if !defined(STM32H7)
case ADC_RESOLUTION_6B: return 6;
#endif
case ADC_RESOLUTION_8B: return 8;
case ADC_RESOLUTION_10B: return 10;
}
return 12;
}
int adc_read_core_temp(ADC_HandleTypeDef *adcHandle) {
int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR);
// Note: constants assume 12-bit resolution, so we scale the raw value to
// be 12-bits.
raw_value <<= (12 - adc_get_resolution(adcHandle));
return ((raw_value - CORE_TEMP_V25) / CORE_TEMP_AVG_SLOPE) + 25;
}
#if MICROPY_PY_BUILTINS_FLOAT
// correction factor for reference value
STATIC volatile float adc_refcor = 1.0f;
float adc_read_core_temp_float(ADC_HandleTypeDef *adcHandle) {
int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR);
// constants assume 12-bit resolution so we scale the raw value to 12-bits
raw_value <<= (12 - adc_get_resolution(adcHandle));
float core_temp_avg_slope = (*ADC_CAL2 - *ADC_CAL1) / 80.0;
return (((float)raw_value * adc_refcor - *ADC_CAL1) / core_temp_avg_slope) + 30.0f;
}
float adc_read_core_vbat(ADC_HandleTypeDef *adcHandle) {
uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VBAT);
// Note: constants assume 12-bit resolution, so we scale the raw value to
// be 12-bits.
raw_value <<= (12 - adc_get_resolution(adcHandle));
#if defined(STM32F4) || defined(STM32F7)
// ST docs say that (at least on STM32F42x and STM32F43x), VBATE must
// be disabled when TSVREFE is enabled for TEMPSENSOR and VREFINT
// conversions to work. VBATE is enabled by the above call to read
// the channel, and here we disable VBATE so a subsequent call for
// TEMPSENSOR or VREFINT works correctly.
ADC->CCR &= ~ADC_CCR_VBATE;
#endif
return raw_value * VBAT_DIV * ADC_SCALE * adc_refcor;
}
float adc_read_core_vref(ADC_HandleTypeDef *adcHandle) {
uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VREFINT);
// Note: constants assume 12-bit resolution, so we scale the raw value to
// be 12-bits.
raw_value <<= (12 - adc_get_resolution(adcHandle));
// update the reference correction factor
adc_refcor = ((float)(*VREFIN_CAL)) / ((float)raw_value);
return (*VREFIN_CAL) * ADC_SCALE;
}
#endif
/******************************************************************************/
/* MicroPython bindings : adc_all object */
STATIC mp_obj_t adc_all_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check number of arguments
mp_arg_check_num(n_args, n_kw, 1, 2, false);
// make ADCAll object
pyb_adc_all_obj_t *o = m_new_obj(pyb_adc_all_obj_t);
o->base.type = &pyb_adc_all_type;
mp_int_t res = mp_obj_get_int(args[0]);
uint32_t en_mask = 0xffffffff;
if (n_args > 1) {
en_mask = mp_obj_get_int(args[1]);
}
adc_init_all(o, res, en_mask);
return o;
}
STATIC mp_obj_t adc_all_read_channel(mp_obj_t self_in, mp_obj_t channel) {
pyb_adc_all_obj_t *self = self_in;
uint32_t chan = adc_get_internal_channel(mp_obj_get_int(channel));
uint32_t data = adc_config_and_read_channel(&self->handle, chan);
return mp_obj_new_int(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(adc_all_read_channel_obj, adc_all_read_channel);
STATIC mp_obj_t adc_all_read_core_temp(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
#if MICROPY_PY_BUILTINS_FLOAT
float data = adc_read_core_temp_float(&self->handle);
return mp_obj_new_float(data);
#else
int data = adc_read_core_temp(&self->handle);
return mp_obj_new_int(data);
#endif
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_temp_obj, adc_all_read_core_temp);
#if MICROPY_PY_BUILTINS_FLOAT
STATIC mp_obj_t adc_all_read_core_vbat(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
float data = adc_read_core_vbat(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vbat_obj, adc_all_read_core_vbat);
STATIC mp_obj_t adc_all_read_core_vref(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
float data = adc_read_core_vref(&self->handle);
return mp_obj_new_float(data);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vref_obj, adc_all_read_core_vref);
STATIC mp_obj_t adc_all_read_vref(mp_obj_t self_in) {
pyb_adc_all_obj_t *self = self_in;
adc_read_core_vref(&self->handle);
return mp_obj_new_float(3.3 * adc_refcor);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_vref_obj, adc_all_read_vref);
#endif
STATIC const mp_rom_map_elem_t adc_all_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read_channel), MP_ROM_PTR(&adc_all_read_channel_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_core_temp), MP_ROM_PTR(&adc_all_read_core_temp_obj) },
#if MICROPY_PY_BUILTINS_FLOAT
{ MP_ROM_QSTR(MP_QSTR_read_core_vbat), MP_ROM_PTR(&adc_all_read_core_vbat_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_core_vref), MP_ROM_PTR(&adc_all_read_core_vref_obj) },
{ MP_ROM_QSTR(MP_QSTR_read_vref), MP_ROM_PTR(&adc_all_read_vref_obj) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(adc_all_locals_dict, adc_all_locals_dict_table);
const mp_obj_type_t pyb_adc_all_type = {
{ &mp_type_type },
.name = MP_QSTR_ADCAll,
.make_new = adc_all_make_new,
.locals_dict = (mp_obj_dict_t*)&adc_all_locals_dict,
};
#endif // MICROPY_HW_ENABLE_ADC