circuitpython/ports/renesas-ra/main.c
David Grayson c046b23ea2 shared/runtime/pyexec: Don't allow Ctrl+C to interrupt frozen boot code.
Helps prevent the filesystem from getting formatted by mistake, among other
things.  For example, on a Pico board, entering Ctrl+D and Ctrl+C fast many
times will eventually wipe the filesystem (without warning or notice).

Further rationale: Ctrl+C is used a lot by automation scripts (eg mpremote)
and UI's (eg Mu, Thonny) to get the board into a known state.  If the board
is not responding for a short time then it's not possible to know if it's
just a slow start up (eg in _boot.py), or an infinite loop in the main
application.  The former should not be interrupted, but the latter should.
The only way to distinguish these two cases would be to wait "long enough",
and if there's nothing on the serial after "long enough" then assume it's
running the application and Ctrl+C should break out of it.  But defining
"long enough" is impossible for all the different boards and their possible
behaviour.  The solution in this commit is to make it so that frozen
start-up code cannot be interrupted by Ctrl+C.  That code then effectively
acts like normal C start-up code, which also cannot be interrupted.

Note: on the stm32 port this was never seen as an issue because all
start-up code is in C.  But now other ports start to put more things in
_boot.py and so this problem crops up.

Signed-off-by: David Grayson <davidegrayson@gmail.com>
2023-04-05 10:38:50 +10:00

402 lines
12 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2020 Damien P. George
* Copyright (c) 2021,2022 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/stackctrl.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "shared/readline/readline.h"
#include "shared/runtime/pyexec.h"
#include "shared/runtime/softtimer.h"
#include "lib/oofatfs/ff.h"
#include "lib/littlefs/lfs1.h"
#include "lib/littlefs/lfs1_util.h"
#include "lib/littlefs/lfs2.h"
#include "lib/littlefs/lfs2_util.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "extmod/vfs_lfs.h"
#include "boardctrl.h"
#include "systick.h"
#include "pendsv.h"
#include "powerctrl.h"
#include "pybthread.h"
#include "gccollect.h"
#include "factoryreset.h"
#include "modmachine.h"
#include "spi.h"
#include "uart.h"
#include "timer.h"
#include "led.h"
#include "pin.h"
#include "extint.h"
#include "usrsw.h"
#include "rtc.h"
#include "storage.h"
#define RA_EARLY_PRINT 1 /* for enabling mp_print in boardctrl. */
#if MICROPY_PY_THREAD
STATIC pyb_thread_t pyb_thread_main;
#endif
#if defined(MICROPY_HW_UART_REPL)
#ifndef MICROPY_HW_UART_REPL_RXBUF
#define MICROPY_HW_UART_REPL_RXBUF (260)
#endif
STATIC machine_uart_obj_t machine_uart_repl_obj;
STATIC uint8_t machine_uart_repl_rxbuf[MICROPY_HW_UART_REPL_RXBUF];
#endif
void NORETURN __fatal_error(const char *msg) {
for (volatile uint delay = 0; delay < 1000000; delay++) {
}
led_state(1, 1);
led_state(2, 1);
led_state(3, 1);
led_state(4, 1);
mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
mp_hal_stdout_tx_strn(msg, strlen(msg));
for (uint i = 0;;) {
led_toggle(((i++) & 3) + 1);
for (volatile uint delay = 0; delay < 1000000; delay++) {
}
if (i >= 16) {
// to conserve power
__WFI();
}
}
}
void nlr_jump_fail(void *val) {
printf("FATAL: uncaught exception %p\n", val);
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(val));
__fatal_error("");
}
void abort(void) {
__fatal_error("abort");
}
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
(void)func;
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("");
}
#endif
STATIC mp_obj_t pyb_main(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
};
if (mp_obj_is_str(pos_args[0])) {
MP_STATE_PORT(pyb_config_main) = pos_args[0];
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
#if MICROPY_ENABLE_COMPILER
MP_STATE_VM(mp_optimise_value) = args[0].u_int;
#endif
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);
#if MICROPY_HW_FLASH_MOUNT_AT_BOOT
// avoid inlining to avoid stack usage within main()
MP_NOINLINE STATIC bool init_flash_fs(uint reset_mode) {
if (reset_mode == BOARDCTRL_RESET_MODE_FACTORY_FILESYSTEM) {
// Asked by user to reset filesystem
factory_reset_create_filesystem();
}
// Default block device to entire flash storage
mp_obj_t bdev = MP_OBJ_FROM_PTR(&pyb_flash_obj);
int ret;
#if MICROPY_VFS_LFS1 || MICROPY_VFS_LFS2
// Try to detect the block device used for the main filesystem based on the
// contents of the superblock, which can be the first or second block.
mp_int_t len = -1;
uint8_t buf[64];
for (size_t block_num = 0; block_num <= 1; ++block_num) {
ret = storage_readblocks_ext(buf, block_num, 0, sizeof(buf));
#if MICROPY_VFS_LFS1
if (ret == 0 && memcmp(&buf[40], "littlefs", 8) == 0) {
// LFS1
lfs1_superblock_t *superblock = (void *)&buf[12];
uint32_t block_size = lfs1_fromle32(superblock->d.block_size);
uint32_t block_count = lfs1_fromle32(superblock->d.block_count);
len = block_count * block_size;
break;
}
#endif
#if MICROPY_VFS_LFS2
if (ret == 0 && memcmp(&buf[8], "littlefs", 8) == 0) {
// LFS2
lfs2_superblock_t *superblock = (void *)&buf[20];
uint32_t block_size = lfs2_fromle32(superblock->block_size);
uint32_t block_count = lfs2_fromle32(superblock->block_count);
len = block_count * block_size;
break;
}
#endif
}
if (len != -1) {
// Detected a littlefs filesystem so create correct block device for it
mp_obj_t args[] = { MP_OBJ_NEW_QSTR(MP_QSTR_len), MP_OBJ_NEW_SMALL_INT(len) };
bdev = MP_OBJ_TYPE_GET_SLOT(&pyb_flash_type, make_new)(&pyb_flash_type, 0, 1, args);
}
#endif
// Try to mount the flash on "/flash" and chdir to it for the boot-up directory.
mp_obj_t mount_point = MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash);
ret = mp_vfs_mount_and_chdir_protected(bdev, mount_point);
if (ret == -MP_ENODEV && bdev == MP_OBJ_FROM_PTR(&pyb_flash_obj)
&& reset_mode != BOARDCTRL_RESET_MODE_FACTORY_FILESYSTEM) {
// No filesystem, bdev is still the default (so didn't detect a possibly corrupt littlefs),
// and didn't already create a filesystem, so try to create a fresh one now.
ret = factory_reset_create_filesystem();
if (ret == 0) {
ret = mp_vfs_mount_and_chdir_protected(bdev, mount_point);
}
}
if (ret != 0) {
printf("MPY: can't mount flash\n");
return false;
}
return true;
}
#endif
void ra_main(uint32_t reset_mode) {
// Hook for a board to run code at start up, for example check if a
// bootloader should be entered instead of the main application.
MICROPY_BOARD_STARTUP();
// Initialize interrupt, systick and internal flash for RA.
ra_init();
MICROPY_BOARD_EARLY_INIT();
// basic sub-system init
#if MICROPY_PY_THREAD
pyb_thread_init(&pyb_thread_main);
#endif
pendsv_init();
led_init();
#if MICROPY_HW_HAS_SWITCH
switch_init0();
#endif
machine_init();
#if MICROPY_HW_ENABLE_RTC
rtc_init_start(false);
#endif
uart_init0();
spi_init0();
#if MICROPY_HW_ENABLE_STORAGE
storage_init();
#endif
#if defined(MICROPY_HW_UART_REPL)
// Set up a UART REPL using a statically allocated object
machine_uart_repl_obj.base.type = &machine_uart_type;
machine_uart_repl_obj.uart_id = MICROPY_HW_UART_REPL;
machine_uart_repl_obj.is_static = true;
machine_uart_repl_obj.timeout = 0;
machine_uart_repl_obj.timeout_char = 2;
uart_init(&machine_uart_repl_obj, MICROPY_HW_UART_REPL_BAUD, UART_WORDLENGTH_8B, UART_PARITY_NONE, UART_STOPBITS_1, 0);
uart_set_rxbuf(&machine_uart_repl_obj, sizeof(machine_uart_repl_rxbuf), machine_uart_repl_rxbuf);
uart_attach_to_repl(&machine_uart_repl_obj, true);
MP_STATE_PORT(machine_uart_obj_all)[MICROPY_HW_UART_REPL] = &machine_uart_repl_obj;
#if RA_EARLY_PRINT
MP_STATE_PORT(pyb_stdio_uart) = &machine_uart_repl_obj;
#endif
#endif
boardctrl_state_t state;
state.reset_mode = reset_mode;
state.log_soft_reset = false;
MICROPY_BOARD_BEFORE_SOFT_RESET_LOOP(&state);
soft_reset:
MICROPY_BOARD_TOP_SOFT_RESET_LOOP(&state);
// Python threading init
#if MICROPY_PY_THREAD
mp_thread_init();
#endif
// Stack limit should be less than real stack size, so we have a chance
// to recover from limit hit. (Limit is measured in bytes.)
// Note: stack control relies on main thread being initialised above
mp_stack_set_top(&_estack);
mp_stack_set_limit((char *)&_estack - (char *)&_sstack - 1024);
// GC init
gc_init(MICROPY_HEAP_START, MICROPY_HEAP_END);
#if MICROPY_ENABLE_PYSTACK
static mp_obj_t pystack[384];
mp_pystack_init(pystack, &pystack[384]);
#endif
// MicroPython init
mp_init();
// Initialise low-level sub-systems. Here we need to very basic things like
// zeroing out memory and resetting any of the sub-systems. Following this
// we can run Python scripts (eg boot.py), but anything that is configurable
// by boot.py must be set after boot.py is run.
#if defined(MICROPY_HW_UART_REPL)
MP_STATE_PORT(pyb_stdio_uart) = &machine_uart_repl_obj;
#else
MP_STATE_PORT(pyb_stdio_uart) = NULL;
#endif
readline_init0();
machine_pin_init();
extint_init0();
timer_init0();
#if MICROPY_HW_ENABLE_I2S
machine_i2s_init0();
#endif
// Initialise the local flash filesystem.
// Create it if needed, mount in on /flash, and set it as current dir.
bool mounted_flash = false;
#if MICROPY_HW_FLASH_MOUNT_AT_BOOT
mounted_flash = init_flash_fs(state.reset_mode);
#endif
// set sys.path based on mounted filesystems
if (mounted_flash) {
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
}
// reset config variables; they should be set by boot.py
MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;
// Run optional frozen boot code.
#ifdef MICROPY_BOARD_FROZEN_BOOT_FILE
pyexec_frozen_module(MICROPY_BOARD_FROZEN_BOOT_FILE, false);
#endif
// Run boot.py (or whatever else a board configures at this stage).
if (MICROPY_BOARD_RUN_BOOT_PY(&state) == BOARDCTRL_GOTO_SOFT_RESET_EXIT) {
goto soft_reset_exit;
}
// Now we initialise sub-systems that need configuration from boot.py,
// or whose initialisation can be safely deferred until after running
// boot.py.
// At this point everything is fully configured and initialised.
// Run main.py (or whatever else a board configures at this stage).
if (MICROPY_BOARD_RUN_MAIN_PY(&state) == BOARDCTRL_GOTO_SOFT_RESET_EXIT) {
goto soft_reset_exit;
}
#if MICROPY_ENABLE_COMPILER
// Main script is finished, so now go into REPL mode.
// The REPL mode can change, or it can request a soft reset.
for (;;) {
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
if (pyexec_raw_repl() != 0) {
break;
}
} else {
if (pyexec_friendly_repl() != 0) {
break;
}
}
}
#endif
soft_reset_exit:
// soft reset
MICROPY_BOARD_START_SOFT_RESET(&state);
#if MICROPY_HW_ENABLE_STORAGE
if (state.log_soft_reset) {
mp_printf(&mp_plat_print, "MPY: sync filesystems\n");
}
storage_flush();
#endif
if (state.log_soft_reset) {
mp_printf(&mp_plat_print, "MPY: soft reboot\n");
}
soft_timer_deinit();
timer_deinit();
uart_deinit_all();
#if MICROPY_HW_ENABLE_DAC
dac_deinit_all();
#endif
machine_pin_deinit();
machine_deinit();
#if MICROPY_PY_THREAD
pyb_thread_deinit();
#endif
MICROPY_BOARD_END_SOFT_RESET(&state);
gc_sweep_all();
mp_deinit();
goto soft_reset;
}
MP_REGISTER_ROOT_POINTER(mp_obj_t pyb_config_main);