447 lines
15 KiB
C
447 lines
15 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
|
|
* Copyright (c) 2016 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "common-hal/pulseio/PWMOut.h"
|
|
#include "shared-bindings/pulseio/PWMOut.h"
|
|
#include "shared-bindings/microcontroller/Processor.h"
|
|
|
|
#include "atmel_start_pins.h"
|
|
#include "hal/utils/include/utils_repeat_macro.h"
|
|
#include "samd/timers.h"
|
|
#include "supervisor/shared/translate.h"
|
|
|
|
#include "samd/pins.h"
|
|
|
|
#undef ENABLE
|
|
|
|
# define _TCC_SIZE(unused, n) TCC ## n ## _SIZE,
|
|
# define TCC_SIZES { REPEAT_MACRO(_TCC_SIZE, 0, TCC_INST_NUM) }
|
|
|
|
static uint32_t tcc_periods[TCC_INST_NUM];
|
|
static uint32_t tc_periods[TC_INST_NUM];
|
|
|
|
uint32_t target_tcc_frequencies[TCC_INST_NUM];
|
|
uint8_t tcc_refcount[TCC_INST_NUM];
|
|
|
|
// This bitmask keeps track of which channels of a TCC are currently claimed.
|
|
#ifdef SAMD21
|
|
uint8_t tcc_channels[3]; // Set by pwmout_reset() to {0xf0, 0xfc, 0xfc} initially.
|
|
#endif
|
|
#ifdef SAMD51
|
|
uint8_t tcc_channels[5]; // Set by pwmout_reset() to {0xc0, 0xf0, 0xf8, 0xfc, 0xfc} initially.
|
|
#endif
|
|
|
|
void pwmout_reset(void) {
|
|
// Reset all timers
|
|
for (int i = 0; i < TCC_INST_NUM; i++) {
|
|
target_tcc_frequencies[i] = 0;
|
|
tcc_refcount[i] = 0;
|
|
}
|
|
Tcc *tccs[TCC_INST_NUM] = TCC_INSTS;
|
|
for (int i = 0; i < TCC_INST_NUM; i++) {
|
|
// Disable the module before resetting it.
|
|
if (tccs[i]->CTRLA.bit.ENABLE == 1) {
|
|
tccs[i]->CTRLA.bit.ENABLE = 0;
|
|
while (tccs[i]->SYNCBUSY.bit.ENABLE == 1) {
|
|
}
|
|
}
|
|
uint8_t mask = 0xff;
|
|
for (uint8_t j = 0; j < tcc_cc_num[i]; j++) {
|
|
mask <<= 1;
|
|
}
|
|
tcc_channels[i] = mask;
|
|
tccs[i]->CTRLA.bit.SWRST = 1;
|
|
}
|
|
Tc *tcs[TC_INST_NUM] = TC_INSTS;
|
|
for (int i = 0; i < TC_INST_NUM; i++) {
|
|
tcs[i]->COUNT16.CTRLA.bit.SWRST = 1;
|
|
while (tcs[i]->COUNT16.CTRLA.bit.SWRST == 1) {
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint8_t tcc_channel(const pin_timer_t* t) {
|
|
// For the SAMD51 this hardcodes the use of OTMX == 0x0, the output matrix mapping, which uses
|
|
// SAMD21-style modulo mapping.
|
|
return t->wave_output % tcc_cc_num[t->index];
|
|
}
|
|
|
|
bool channel_ok(const pin_timer_t* t) {
|
|
uint8_t channel_bit = 1 << tcc_channel(t);
|
|
return (!t->is_tc && ((tcc_channels[t->index] & channel_bit) == 0)) ||
|
|
t->is_tc;
|
|
}
|
|
|
|
void common_hal_pulseio_pwmout_construct(pulseio_pwmout_obj_t* self,
|
|
const mcu_pin_obj_t* pin,
|
|
uint16_t duty,
|
|
uint32_t frequency,
|
|
bool variable_frequency) {
|
|
self->pin = pin;
|
|
self->variable_frequency = variable_frequency;
|
|
|
|
if (pin->timer[0].index >= TC_INST_NUM &&
|
|
pin->timer[1].index >= TCC_INST_NUM
|
|
#ifdef SAMD51
|
|
&& pin->timer[2].index >= TCC_INST_NUM
|
|
#endif
|
|
) {
|
|
mp_raise_ValueError(translate("Invalid pin"));
|
|
}
|
|
|
|
if (frequency == 0 || frequency > 6000000) {
|
|
mp_raise_ValueError(translate("Invalid PWM frequency"));
|
|
}
|
|
|
|
// Figure out which timer we are using.
|
|
|
|
// First see if a tcc is already going with the frequency we want and our
|
|
// channel is unused. tc's don't have enough channels to share.
|
|
const pin_timer_t* timer = NULL;
|
|
uint8_t mux_position = 0;
|
|
if (!variable_frequency) {
|
|
for (uint8_t i = 0; i < TCC_INST_NUM && timer == NULL; i++) {
|
|
if (target_tcc_frequencies[i] != frequency) {
|
|
continue;
|
|
}
|
|
for (uint8_t j = 0; j < NUM_TIMERS_PER_PIN && timer == NULL; j++) {
|
|
const pin_timer_t* t = &pin->timer[j];
|
|
if (t->index != i || t->is_tc || t->index >= TCC_INST_NUM) {
|
|
continue;
|
|
}
|
|
Tcc* tcc = tcc_insts[t->index];
|
|
if (tcc->CTRLA.bit.ENABLE == 1 && channel_ok(t)) {
|
|
timer = t;
|
|
mux_position = j;
|
|
// Claim channel.
|
|
tcc_channels[timer->index] |= (1 << tcc_channel(timer));
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// No existing timer has been found, so find a new one to use and set it up.
|
|
if (timer == NULL) {
|
|
// By default, with fixed frequency we want to share a TCC because its likely we'll have
|
|
// other outputs at the same frequency. If the frequency is variable then we'll only have
|
|
// one output so we start with the TCs to see if they work.
|
|
int8_t direction = -1;
|
|
uint8_t start = NUM_TIMERS_PER_PIN - 1;
|
|
bool found = false;
|
|
if (variable_frequency) {
|
|
direction = 1;
|
|
start = 0;
|
|
}
|
|
for (int8_t i = start; i >= 0 && i < NUM_TIMERS_PER_PIN && timer == NULL; i += direction) {
|
|
const pin_timer_t* t = &pin->timer[i];
|
|
if ((!t->is_tc && t->index >= TCC_INST_NUM) ||
|
|
(t->is_tc && t->index >= TC_INST_NUM)) {
|
|
continue;
|
|
}
|
|
if (t->is_tc) {
|
|
found = true;
|
|
Tc* tc = tc_insts[t->index];
|
|
if (tc->COUNT16.CTRLA.bit.ENABLE == 0 && t->wave_output == 1) {
|
|
timer = t;
|
|
mux_position = i;
|
|
}
|
|
} else {
|
|
Tcc* tcc = tcc_insts[t->index];
|
|
if (tcc->CTRLA.bit.ENABLE == 0 && channel_ok(t)) {
|
|
timer = t;
|
|
mux_position = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (timer == NULL) {
|
|
if (found) {
|
|
mp_raise_ValueError(translate("All timers for this pin are in use"));
|
|
} else {
|
|
mp_raise_RuntimeError(translate("All timers in use"));
|
|
}
|
|
return;
|
|
}
|
|
|
|
uint8_t resolution = 0;
|
|
if (timer->is_tc) {
|
|
resolution = 16;
|
|
} else {
|
|
// TCC resolution varies so look it up.
|
|
const uint8_t _tcc_sizes[TCC_INST_NUM] = TCC_SIZES;
|
|
resolution = _tcc_sizes[timer->index];
|
|
}
|
|
// First determine the divisor that gets us the highest resolution.
|
|
uint32_t system_clock = common_hal_mcu_processor_get_frequency();
|
|
uint32_t top;
|
|
uint8_t divisor;
|
|
for (divisor = 0; divisor < 8; divisor++) {
|
|
top = (system_clock / prescaler[divisor] / frequency) - 1;
|
|
if (top < (1u << resolution)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We use the zeroeth clock on either port to go full speed.
|
|
turn_on_clocks(timer->is_tc, timer->index, 0);
|
|
|
|
if (timer->is_tc) {
|
|
tc_periods[timer->index] = top;
|
|
Tc* tc = tc_insts[timer->index];
|
|
#ifdef SAMD21
|
|
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
|
|
TC_CTRLA_PRESCALER(divisor) |
|
|
TC_CTRLA_WAVEGEN_MPWM;
|
|
tc->COUNT16.CC[0].reg = top;
|
|
#endif
|
|
#ifdef SAMD51
|
|
|
|
tc->COUNT16.CTRLA.bit.SWRST = 1;
|
|
while (tc->COUNT16.CTRLA.bit.SWRST == 1) {
|
|
}
|
|
tc_set_enable(tc, false);
|
|
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER(divisor);
|
|
tc->COUNT16.WAVE.reg = TC_WAVE_WAVEGEN_MPWM;
|
|
tc->COUNT16.CCBUF[0].reg = top;
|
|
tc->COUNT16.CCBUF[1].reg = 0;
|
|
#endif
|
|
|
|
tc_set_enable(tc, true);
|
|
} else {
|
|
tcc_periods[timer->index] = top;
|
|
Tcc* tcc = tcc_insts[timer->index];
|
|
tcc_set_enable(tcc, false);
|
|
tcc->CTRLA.bit.PRESCALER = divisor;
|
|
tcc->PER.bit.PER = top;
|
|
tcc->WAVE.bit.WAVEGEN = TCC_WAVE_WAVEGEN_NPWM_Val;
|
|
tcc_set_enable(tcc, true);
|
|
target_tcc_frequencies[timer->index] = frequency;
|
|
tcc_refcount[timer->index]++;
|
|
if (variable_frequency) {
|
|
// We're changing frequency so claim all of the channels.
|
|
tcc_channels[timer->index] = 0xff;
|
|
} else {
|
|
tcc_channels[timer->index] |= (1 << tcc_channel(timer));
|
|
}
|
|
}
|
|
}
|
|
|
|
self->timer = timer;
|
|
|
|
gpio_set_pin_function(pin->number, GPIO_PIN_FUNCTION_E + mux_position);
|
|
|
|
common_hal_pulseio_pwmout_set_duty_cycle(self, duty);
|
|
}
|
|
|
|
bool common_hal_pulseio_pwmout_deinited(pulseio_pwmout_obj_t* self) {
|
|
return self->pin == mp_const_none;
|
|
}
|
|
|
|
void common_hal_pulseio_pwmout_deinit(pulseio_pwmout_obj_t* self) {
|
|
if (common_hal_pulseio_pwmout_deinited(self)) {
|
|
return;
|
|
}
|
|
const pin_timer_t* t = self->timer;
|
|
if (t->is_tc) {
|
|
Tc* tc = tc_insts[t->index];
|
|
tc_set_enable(tc, false);
|
|
tc->COUNT16.CTRLA.bit.SWRST = true;
|
|
tc_wait_for_sync(tc);
|
|
} else {
|
|
tcc_refcount[t->index]--;
|
|
tcc_channels[t->index] &= ~(1 << tcc_channel(t));
|
|
if (tcc_refcount[t->index] == 0) {
|
|
target_tcc_frequencies[t->index] = 0;
|
|
Tcc* tcc = tcc_insts[t->index];
|
|
tcc_set_enable(tcc, false);
|
|
tcc->CTRLA.bit.SWRST = true;
|
|
while (tcc->SYNCBUSY.bit.SWRST != 0) {
|
|
/* Wait for sync */
|
|
}
|
|
}
|
|
}
|
|
reset_pin_number(self->pin->number);
|
|
self->pin = mp_const_none;
|
|
}
|
|
|
|
extern void common_hal_pulseio_pwmout_set_duty_cycle(pulseio_pwmout_obj_t* self, uint16_t duty) {
|
|
const pin_timer_t* t = self->timer;
|
|
if (t->is_tc) {
|
|
uint16_t adjusted_duty = tc_periods[t->index] * duty / 0xffff;
|
|
#ifdef SAMD21
|
|
tc_insts[t->index]->COUNT16.CC[t->wave_output].reg = adjusted_duty;
|
|
#endif
|
|
#ifdef SAMD51
|
|
Tc* tc = tc_insts[t->index];
|
|
while (tc->COUNT16.SYNCBUSY.bit.CC1 != 0) {
|
|
// Wait for a previous value to be written. This can wait up to one period so we do
|
|
// other stuff in the meantime.
|
|
#ifdef MICROPY_VM_HOOK_LOOP
|
|
MICROPY_VM_HOOK_LOOP
|
|
#endif
|
|
}
|
|
tc->COUNT16.CCBUF[1].reg = adjusted_duty;
|
|
#endif
|
|
} else {
|
|
uint32_t adjusted_duty = ((uint64_t) tcc_periods[t->index]) * duty / 0xffff;
|
|
uint8_t channel = tcc_channel(t);
|
|
Tcc* tcc = tcc_insts[t->index];
|
|
while ((tcc->SYNCBUSY.vec.CC & (1 << channel)) != 0) {
|
|
// Wait for a previous value to be written. This can wait up to one period so we do
|
|
// other stuff in the meantime.
|
|
#ifdef MICROPY_VM_HOOK_LOOP
|
|
MICROPY_VM_HOOK_LOOP
|
|
#endif
|
|
}
|
|
#ifdef SAMD21
|
|
tcc->CCB[channel].reg = adjusted_duty;
|
|
#endif
|
|
#ifdef SAMD51
|
|
tcc->CCBUF[channel].reg = adjusted_duty;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
uint16_t common_hal_pulseio_pwmout_get_duty_cycle(pulseio_pwmout_obj_t* self) {
|
|
const pin_timer_t* t = self->timer;
|
|
if (t->is_tc) {
|
|
Tc* tc = tc_insts[t->index];
|
|
tc_wait_for_sync(tc);
|
|
uint16_t cv = tc->COUNT16.CC[t->wave_output].reg;
|
|
return cv * 0xffff / tc_periods[t->index];
|
|
} else {
|
|
Tcc* tcc = tcc_insts[t->index];
|
|
uint8_t channel = tcc_channel(t);
|
|
uint32_t cv = 0;
|
|
#ifdef SAMD21
|
|
if ((tcc->STATUS.vec.CCBV & (1 << channel)) != 0) {
|
|
cv = tcc->CCB[channel].reg;
|
|
} else {
|
|
cv = tcc->CC[channel].reg;
|
|
}
|
|
#endif
|
|
#ifdef SAMD51
|
|
if ((tcc->STATUS.vec.CCBUFV & (1 << channel)) != 0) {
|
|
cv = tcc->CCBUF[channel].reg;
|
|
} else {
|
|
cv = tcc->CC[channel].reg;
|
|
}
|
|
#endif
|
|
|
|
uint32_t duty_cycle = ((uint64_t) cv) * 0xffff / tcc_periods[t->index];
|
|
|
|
return duty_cycle;
|
|
}
|
|
}
|
|
|
|
|
|
void common_hal_pulseio_pwmout_set_frequency(pulseio_pwmout_obj_t* self,
|
|
uint32_t frequency) {
|
|
if (frequency == 0 || frequency > 6000000) {
|
|
mp_raise_ValueError(translate("Invalid PWM frequency"));
|
|
}
|
|
const pin_timer_t* t = self->timer;
|
|
uint8_t resolution;
|
|
if (t->is_tc) {
|
|
resolution = 16;
|
|
} else {
|
|
resolution = 24;
|
|
}
|
|
uint32_t system_clock = common_hal_mcu_processor_get_frequency();
|
|
uint32_t new_top;
|
|
uint8_t new_divisor;
|
|
for (new_divisor = 0; new_divisor < 8; new_divisor++) {
|
|
new_top = (system_clock / prescaler[new_divisor] / frequency) - 1;
|
|
if (new_top < (1u << resolution)) {
|
|
break;
|
|
}
|
|
}
|
|
uint16_t old_duty = common_hal_pulseio_pwmout_get_duty_cycle(self);
|
|
if (t->is_tc) {
|
|
Tc* tc = tc_insts[t->index];
|
|
uint8_t old_divisor = tc->COUNT16.CTRLA.bit.PRESCALER;
|
|
if (new_divisor != old_divisor) {
|
|
tc_set_enable(tc, false);
|
|
tc->COUNT16.CTRLA.bit.PRESCALER = new_divisor;
|
|
tc_set_enable(tc, true);
|
|
}
|
|
tc_periods[t->index] = new_top;
|
|
#ifdef SAMD21
|
|
tc->COUNT16.CC[0].reg = new_top;
|
|
#endif
|
|
#ifdef SAMD51
|
|
while (tc->COUNT16.SYNCBUSY.reg != 0) {
|
|
/* Wait for sync */
|
|
}
|
|
tc->COUNT16.CCBUF[0].reg = new_top;
|
|
#endif
|
|
} else {
|
|
Tcc* tcc = tcc_insts[t->index];
|
|
uint8_t old_divisor = tcc->CTRLA.bit.PRESCALER;
|
|
if (new_divisor != old_divisor) {
|
|
tcc_set_enable(tcc, false);
|
|
tcc->CTRLA.bit.PRESCALER = new_divisor;
|
|
tcc_set_enable(tcc, true);
|
|
}
|
|
tcc_periods[t->index] = new_top;
|
|
#ifdef SAMD21
|
|
tcc->PERB.bit.PERB = new_top;
|
|
#endif
|
|
#ifdef SAMD51
|
|
while (tcc->SYNCBUSY.reg != 0) {
|
|
/* Wait for sync */
|
|
}
|
|
tcc->PERBUF.bit.PERBUF = new_top;
|
|
#endif
|
|
}
|
|
|
|
common_hal_pulseio_pwmout_set_duty_cycle(self, old_duty);
|
|
}
|
|
|
|
uint32_t common_hal_pulseio_pwmout_get_frequency(pulseio_pwmout_obj_t* self) {
|
|
uint32_t system_clock = common_hal_mcu_processor_get_frequency();
|
|
const pin_timer_t* t = self->timer;
|
|
uint8_t divisor;
|
|
uint32_t top;
|
|
if (t->is_tc) {
|
|
divisor = tc_insts[t->index]->COUNT16.CTRLA.bit.PRESCALER;
|
|
top = tc_periods[t->index];
|
|
} else {
|
|
divisor = tcc_insts[t->index]->CTRLA.bit.PRESCALER;
|
|
top = tcc_periods[t->index];
|
|
}
|
|
return (system_clock / prescaler[divisor]) / (top + 1);
|
|
}
|
|
|
|
bool common_hal_pulseio_pwmout_get_variable_frequency(pulseio_pwmout_obj_t* self) {
|
|
return self->variable_frequency;
|
|
}
|