circuitpython/py/runtime.c
Jeff Epler 01cabb0324 Merge tag 'v1.18'
Boosted performance, board.json metadata, more mimxrt, rp2, samd features

This release of MicroPython sees a boost to the overall performance of the
VM and runtime.  This is achieved by the addition of an optional cache to
speed up general hash table lookups, as well as a fast path in the VM for
the LOAD_ATTR opcode on instance types.  The new configuration options are
MICROPY_OPT_MAP_LOOKUP_CACHE and MICROPY_OPT_LOAD_ATTR_FAST_PATH.  As part
of this improvement the MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE option has
been removed, which provided a similar map caching mechanism but with the
cache stored in the bytecode, which made it not useful on bare metal ports.
The new mechanism is measured to be at least as good as the old one,
applies to more map lookups, has a constant RAM overhead, and applies to
native code as well as bytecode.

These performance options are enabled on the esp32, mimxrt, rp2, stm32 and
unix ports.  For esp32 and mimxrt some code is also moved to RAM to further
boost performance.  On stm32, performance increases by about 20% for
benchmarks that are heavy on name lookups, like misc_pystone.py and
misc_raytrace.py.  On esp32 performance can increase by 2-3x, and on mimxrt
it is up to 6x.

All boards in all ports now have a board.json metadata file, which is used
to automatically build firmware and generate a webpage for that board
(among other possibilities).  Auto-build scripts have been added for this
purpose and they build all esp32, mimxrt, rp2, samd and stm32 boards.  The
generated output is available at https://micropython.org/download.

Support for FROZEN_DIR and FROZEN_MPY_DIR has been deprecated for some time
and was finally removed in this release.  Instead of these, FROZEN_MANIFEST
can be used.  The io.resource_stream() function is also removed, replaced
by the pure Python version in micropython-lib.

The search order for importing frozen Python modules is now controlled by
the ".frozen" entry in sys.path.  This string is added by default in the
second position in sys.path.  User code should adjust sys.path depending on
the desired behaviour.  Putting ".frozen" first in sys.path will speed up
importing frozen modules.

A bug in multiple precision integers with bitwise of -0 was fixed in commit
2c139bbf4e.

The platform module has been added to allow querying the compiler and
underlying SDK/HAL/libc version.  This is enabled on esp32, mimxrt and
stm32 ports.

The mpremote tool now supports seek, flush, mkdir and rmdir on PC-mounted
filesystems.  And a help command has been added.

The documentation has seen many additions and improvements thanks (for a
second time) to the Google Season of Docs project.  The rp2 documentation
now includes a reference for PIO assembly instructions, a PIO quick
reference and a PIO tutorial.  The random and stm modules have been
documented, along with sys.settrace, manifest.py files and mpremote.  There
is also now more detail about the differences between MicroPython and
standard Python 3.5 and above.

The esp32 port sees support for ESP32-S3 SoCs, and new boards GENERIC_S3,
ESP32_S2_WROVER, LOLIN_S2_MINI, LOLIN_S2_PICO and UM_FEATHERS2NEO.  The PWM
driver has been improved and now supports all PWM timers and channels, and
the duty_u16() and duty_ns() methods, and it keeps the duty constant when
changing frequency.  The machine.bitstream() function has been improved to
use RMT, with an option to select the original bit-banging implementation.

The mimxrt port gained new hardware features: SDRAM and SD card support, as
well as network integration with a LAN driver.  The machine.WDT class was
added along with the machine.reset_cause(), machine.soft_reset(),
machine.unique_id() add machine.bitstream() functions.  DHT sensor support
was added, and f-strings were enabled.

The rp2 port now has support for networking, and bluetooth using NimBLE.
The Nina-W10 WiFi/BT driver is fully integrated and supported by the new
Arduino Nano RP2040 connect board.  I2S protocol support is added along
with a machine.bitstream() driver and DHT sensor support.  The PWM driver
had a bug fix with the accuracy of setting/getting the frequency, and the
duty value is now retained when changing the frequency.

On the samd port there is now support for the internal flash being a block
device, and for filesystems and the os module.  Pin and LED classes have
been implemented.  There are more time functions, more Python features
enabled, and the help() function is added.  SEEED_WIO_TERMINAL and
SEEED_XIAO board definitions are now available.

The stm32 port now has support for F427, F479 and H7A3(Q)/H7B3(Q) MCUs, and
new board definitions for VCC_GND_H743VI, OLIMEX_H407, MIKROE_QUAIL,
GARATRONIC_PYBSTICK26_F411, STM32H73B3I_DK.  A bug was fixed in the SPI
driver where a SPI transfer could fail if the CYW43 WiFi driver was also
active at the same time.

On the windows port the help() function has been enabled, and support for
build variants added, to match the unix port.

The zephyr port upgraded Zephyr to v2.7.0.

The change in code size since the previous release for various ports is
(absolute and percentage change in the text section):

       bare-arm:  -1520  -2.605%
    minimal x86:  -2256  -1.531%
       unix x64:   -457  -0.089%
    unix nanbox:   -925  -0.204%
          stm32:   +312  +0.079% PYBV10
         cc3200:   -176  -0.096%
        esp8266:   +532  +0.076% GENERIC
          esp32: +27096  +1.820% GENERIC
            nrf:   -212  -0.121% pca10040
            rp2:  +9904  +2.051% PICO
           samd: +35332 +33.969% ADAFRUIT_ITSYBITSY_M4_EXPRESS

The changes that dominate these numbers are:
- bare-arm, minimal: use of new MICROPY_CONFIG_ROM_LEVEL_MINIMUM option and
  subsequent disabling of remaining optional features
- unix, cc3200, nrf: general code size reductions of the core
- stm32: performance improvements, addition of platform module
- esp8266: enabling f-strings
- esp32: use of -O2 instead of -Os
- rp2: machine.I2S and other new hardware features
- samd: filesystem support and other new hardware features

Thanks to everyone who contributed to this release: Alan Dragomirecký,
Alexey Shvetsov, Andrew Leech, Andrew Scheller, Antoine Aubert, Boris
Vinogradov, Chris Boudacoff, Chris Fiege, Christian Decker, Damien George,
Daniel Gorny, Dave Hylands, David Michieli, Emilie Feral, Frédéric Pierson,
gibbonsc, Henk Vergonet, iabdalkader, Ihor Nehrutsa, Jan Hrudka, Jan Staal,
jc_.kim, Jim Mussared, Jonathan Hogg, Laurens Valk, leo chung, Lorenzo
Cappelletti, Magnus von Wachenfeldt, Matt Trentini, Matt van de Werken,
Maureen Helm, Michael Bentley, Michael Buesch, Mike Causer, Mike Teachman,
Mike Wadsten, Ned Konz, NitiKaur, oli, patrick, Patrick Van Oosterwijck,
Peter Boin, Peter Hinch, Peter van der Burg, Philipp Ebensberger, Pooya
Moradi, retsyo, robert-hh, roland van straten, Scott Armitage, Sebastian
Wicki, Seon Rozenblum, Sergei Silnov, Simon Baatz, Stewart Bonnick, stijn,
Tobias Thyrrestrup, Tomas Vanek, YoungJoon Chun.

What follows is a detailed list of changes, generated from the git commit
history, and organised into sections.

Main components
===============

all:
- remove MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE
- update Python formatting to latest Black version 21.12b0
- remove support for FROZEN_DIR and FROZEN_MPY_DIR

py core:
- parse: simplify parse nodes representing a list
- emitnative: ensure load_subscr does not clobber existing REG_RET
- mpconfig.h: define initial templates for "feature levels"
- vm: add a fast path for LOAD_ATTR on instance types
- map: add an optional cache of (map+index) to speed up map lookups
- builtinimport: forward all debug printing to MICROPY_DEBUG_PRINTER
- add wrapper macros so hot VM functions can go in fast code location
- runtime: fix crash when exc __new__ doesn't return an exc instance
- mpconfig.h: define the "extra" feature level
- mpconfig.h: revert MICROPY_REPL_INFO to disabled at all levels
- gc: add hook to run code during time consuming GC operations
- showbc: print unary-op string when dumping bytecode
- modsys: replace non-ASCII quote char with ASCII char
- runtime: allow types to use both .attr and .locals_dict
- lexer: support nested [] and {} characters within f-string params
- objfun.h: remove obsolete comments about entries in extra_args
- builtinimport: refactor module importing
- showbc: fix printing of raw bytecode header on nanbox builds
- modio: remove io.resource_stream function
- only search frozen modules when '.frozen' is found in sys.path
- mkrules.cmake: set frozen preprocessor defs early
- runtime: allow initialising sys.path/argv with defaults
- mpstate.h: only include sys.path/argv objects in state when enabled
- mpz: fix bugs with bitwise of -0 by ensuring all 0's are positive
- qstr: reset mpstate.qstr_last_chunk before raising an error
- modbuiltins: add additional macro for extending builtins
- mpconfig.h: define MICROPY_PY_USSL_FINALISER only if not defined

extmod:
- machine_i2c: make SoftI2C configurable via macro option
- machine_spi: make SoftSPI configurable via macro option
- modonewire: make _onewire module configurable via macro option
- machine_pwm: factor out machine.PWM bindings to common code
- move modnetwork and modusocket from stm32 to extmod
- modnetwork: add STA_IF and AP_IF constants
- modnetwork: add extended socket state
- modusocket: add read/write stream methods to socket object
- modnetwork: define network interfaces in port config files
- network_cyw43: make consistent use of STA and AP constants
- modnetwork: remove STM32 references
- modnetwork: remove modnetwork socket u_state member
- mpbthci.h: add mp_bluetooth_hci_uart_any prototype
- nimble: add nimble CMake fragment file
- add platform module
- moduplatform: improve implementation for PC ports
- vfs_posix_file: support MP_STREAM_POLL in vfs_posix_file_ioctl
- modbluetooth: add connection interval to gap_connect
- nimble: update to NimBLE v1.4
- nimble: remove workaround for OS_ENOMEM
- uasyncio: fix gather returning exceptions from a cancelled task
- uplatform: remove unused definitions
- uplatform: use generic custom platform string
- network_ninaw10: fix scan list order to match other NICs
- modbluetooth: support gap_connect(None) to cancel a connection
- modure: redirect regex debug printing to mp_printf
- network_ninaw10: fix config of AP mode
- network_ninaw10: disable active connections before connecting
- network_ninaw10: make NIC state persistent
- network_ninaw10: return -1 on timeout from recv/send
- network_ninaw10: make recv/recvfrom interchangeable
- moduplatform: detect xtensa arch
- modusocket: allow setting timeout on unbound sockets
- modusocket: initialise accepted socket state
- network_ninaw10: use socket timeout preset in modusocket
- modbluetooth: fix conditional compilation of ringbuf_put_uuid
- modbluetooth: put declaration of connect_cancel in correct place

shared:
- libc/string0: don't include string.h, and provide __memcpy_chk
- runtime/pyexec: cleanup EXEC_FLAG flag constants

drivers:
- ninaw10: add ublox Nina-W10 WiFi/BT module driver
- lsm6dsox: add LSM6DSOX driver and examples
- neopixel: avoid heap alloc in fill()
- ninaw10: fix BSSID byte order, and add null byte to ESSID
- ninaw10/nina_wifi_drv: fix DNS resolution

mpy-cross: no changes specific to this component/port

lib:
- mynewt-nimble: switch to the MicroPython fork of NimBLE
- asf4: point submodule to latest commit on circuitpython branch
- update pico-sdk to 1.3.0 and tinyusb to 0.12.0
- stm32lib: update library for L4 v1.17.0, new G4, WL, and MMC fixes
- stm32lib: update library for fix to F7 USB HS

Support components
==================

docs:
- library/os.rst: clarify littlefs requirements for block erase
- library/bluetooth.rst: update incorrect link to gatts_write
- make.bat: change Windows output dir from '_build' to 'build'
- library/machine.I2S.rst: specify that I2S.shift args are kw-only
- esp32: explain ESP32 PWM modes, timers, and channels
- rp2: add reference for PIO assembly instructions, and PIO tutorial
- library/random.rst: document the random module
- reference/mpremote.rst: add docs for mpremote
- reference/manifest.rst: add docs for manifest.py files
- library/stm.rst: document the stm module
- esp32/tutorial: add an example of peripheral control via regs
- rp2/general.rst: fix typo with missing spaces
- library/framebuf.rst: adjust dimensions in example
- library/rp2.rst: update function asm_pio_encode to add sideset_opt
- reference/filesystem.rst: add detail on how to use littlefs fuse
- rp2/quickref.rst: add section on PIO
- library/sys.rst: add docs for sys.settrace
- esp8266/tutorial: fix comments of FrameBuffer examples
- library/uasyncio.rst: detail exception behaviour in cancel/timeout
- library/machine.Timer.rst: document 'id' as positional-only arg
- library/machine.SPI.rst: add example SPI usage
- library/machine.Timer.rst: document `period` and `callback` args
- library/machine.Pin.rst: add Pin.ANALOG mode constant
- remove trailing spaces and convert tabs to spaces
- library/sys.rst: add note about '.frozen' as an entry in sys.path
- differences: document details of new PEPs/features in Python 3.5+
- update copyright year range to include 2022
- esp32: update RMT quickref example to match latest code

examples: no changes specific to this component/port

tests:
- perf_bench: use math.log instead of math.log2
- basics: add tests for type-checking subclassed exc instances
- micropython/const.py: add comment about required config for test
- cpydiff: clarify f-string diffs regarding concatenation
- basics/int_big_cmp.py: add more tests for big-int comparison
- extmod: skip uselect_poll_udp when poll() is not available

tools:
- autobuild: add auto build for GENERIC_C3_USB
- ci.sh: use IDF v4.4 as part of esp32 CI and build GENERIC_S3
- autobuild: add the MIMXRT1010_EVK board to autobuild
- ci.sh: use a specific ESP IDF v4.4 commit
- autobuild: add script to generate website board metadata
- dfu.py: make tool work with python3 when parsing DFU files
- autobuild: automatically build all mimxrt, rp2 and samd boards
- autobuild: automatically build all stm32 boards
- mpremote: implement seek and flush in ioctl method
- autobuild: automatically build all esp32 boards
- upip.py: support == to specify exact package version
- makemanifest.py: make str conversion compatible with Python 2
- makemanifest.py: merge make-frozen.py
- mpremote: add mkdir and rmdir to RemoteFS
- mpremote: add help command
- mpremote: add link to mpremote docs URL in help message
- upip.py: skip '.frozen' entry in sys.path for install path
- autobuild: build esp8266 OTA image with GENERIC_1M board
- ci.sh: upgrade Zephyr docker image to v0.21.0
- ci.sh: build zephyr nucleo_wb55rg to test zephyr bluetooth build

CI:
- workflows: use Python 3.8 for macos workflow
- workflows: add new workflow to build ports download metadata

The ports
=========

all ports:
- add board.json for all boards
- add images, features and urls to board.json
- add '.frozen' as the first entry in sys.path
- move '.frozen' to second entry in sys.path

bare-arm port:
- mpconfigport.h: use MICROPY_CONFIG_ROM_LEVEL_MINIMUM
- mpconfigport.h: disable remaining optional features

cc3200 port: no changes specific to this component/port

esp8266 port:
- boards/GENERIC: enable f-strings
- extract qstr from object when comparing keys in config()
- etshal.h: remove unneeded function declarations
- allow building a board to any dest directory

esp32 port:
- boards: add new FeatherS2-Neo board definition
- machine_timer: use tx_update member for IDF 4.4 and above
- add support for ESP32-S3 SoCs
- boards: add new GENERIC_S3 board definition
- machine_hw_spi: fix hardware SPI DMA channels for S2/S3
- boards: add board definition for ESP32-S2-WROVER module
- boards: add LOLIN_S2_MINI ESP32-S2 board
- machine_pwm: add support for all PWM timers and channels
- README: updated readme with req IDF vers for ESP32-S2, C3 and S3
- usb: add USB host connection detection for CDC serial output
- machine_pin: block out IO16 and IO17 when using SPIRAM on ESP32
- mpthreadport: fix TCB cleanup function so thread_mutex is ready
- main: add option for a board to hook code into startup sequence
- split out WLAN code from modnetwork.c to network_wlan.c
- enable optimisations and move code to iRAM to boost performance
- usb: improve speed of USB CDC output
- add specific deploy_s2.md instructions for esp32-s2
- boards/LOLIN_S2_MINI: add image to board.json
- boards: update board and deploy metadata for UM_xxx boards
- usb: further improve speed of USB CDC output
- boards/LOLIN_S2_PICO: add LOLIN_S2_PICO board definition files
- boards/ESP32_S2_WROVER: link to specific deploy_s2 instructions
- support building with latest IDF v5
- in machine_i2s, send null samples in underflow situations
- in machine_i2s, make object reference arrays root pointers
- add SDCard support for S3, and a GENERIC_S3_SPIRAM board
- boards/GENERIC_S3: enable BLE on ESP32 S3
- machine_pwm: implement duty_u16() and duty_ns() PWM methods
- extract qstr from object when comparing keys in config()
- machine_pin: make GPIO 26 usable for S2,S3 if SPIRAM not config'd
- machine_hw_spi: fix SPI default pins reordering on ESP32-S2/S3
- machine_hw_spi: set proper default SPI(id=1) pins on S2,S3 and C3
- machine_hw_spi: set proper default SPI(id=2) pins on S2 and S3
- boards: remove SPI pin defaults from GENERIC S2/S3 boards
- modnetwork: synchronize WiFi AUTH_xxx constants with IDF values
- machine_pwm: keep duty constant when changing frequency
- machine_bitstream: replace bit-bang code with RMT-based driver
- machine_i2s: add support for ESP-IDF 4.4
- machine_bitstream: fix signal duplication on output pins
- esp32: enable platform module with IDF version
- boards/GENERIC_D2WD: build with -Os optimisation
- esp32_rmt: install RMT driver on core 1
- machine_bitstream: reinstate bitstream bit-bang implementation

javascript port: no changes specific to this component/port

mimxrt port:
- sdcard: implement SDCard driver
- machine_bitstream: add bitstream function to machine module
- rework flash configuration
- sdram: add SDRAM support
- eth: add LAN support and integrate the network module
- modmachine: implement machine.WDT() and machine.reset_cause()
- boards: fix the D14/D15 pin assignment of MIMXRT1050/60/64_EVK
- hal: remove duplicate definitions from flexspi_hyper_flash.h
- dma_channel: fix the DMA channel management
- fix cycle counter for time.ticks_cpu() and machine.bitstream()
- add dht_readinto() to the mimxrt module, and freeze dht.py
- extend the help() message and README.md
- mpconfigport.h: enable f-strings
- modmachine: implement soft_reset() and unique_id() functions
- boards/make-pins.py: allow empty lines and comments in pins.csv
- optimize the runtime speed
- enable the platform module
- boards: add the Seeed ARCH MIX board
- boards: update the board.json files and add deploy_xx.md files
- fix mp_hal_quiet_timing_enter()/exit() so timer still runs
- support PWM using the FLEXPWM and QTMR modules
- define UART 0 on MIMXRT boards
- support selection of PHY type and address
- re-enable eth checksum creation by HW
- fix a tiny unnoticed bug in sdcard.c
- add a driver for the DP83848 PHY device
- refactor the reading of the machine id
- enable ticks_cpu at boot time for NDEBUG builds only
- use -Og instead of -O0 for DEBUG builds
- tidy up the board flash related files
- hal: allow readSampleClkSrc to be configured by a board
- enable MICROPY_PY_USSL_FINALISER

minimal port:
- mpconfigport.h: use MICROPY_CONFIG_ROM_LEVEL_MINIMUM
- Makefile: don't force a 32-bit build
- mpconfigport.h: disable features that are not needed

nrf port:
- Makefile: improve Black Magic Probe commands
- main: use VFS helper function to mount fs and chdir

pic16bit port: no changes specific to this component/port

powerpc port: no changes specific to this component/port

qemu-arm port: no changes specific to this component/port

rp2 port:
- mpconfigport.h: enable heapq module
- add support for bluetooth module using NimBLE
- add framework for networking
- mpconfigport.h: use the "extra" feature level
- enable optimisations (comp goto, map cache, fast attr)
- machine_i2s: add I2S protocol support
- add support for Nina-W10 WiFi/BT module
- boards: add support for Arduino Nano RP2040
- machine_bitstream: implement the machine.bitstream driver
- boards: add neopixel.py to manifest.py
- rp2_pio: support exec with sideset
- boards/PIMORONI_PICOLIPO_16MB: fix 16MB flash size
- boards: add PYBSTICK26 RP2040 board definition
- machine_uart: handle and clear UART RX timeout IRQ
- boards/ARDUINO_NANO_RP2040_CONNECT: set default I2C pins
- machine_pwm: fix PWM frequency setting
- machine_pwm: keep duty value when changing the frequency
- add support for DHT11 and DHT22 sensors
- CMakeLists.txt: allow a board to override PICO_BOARD
- boards/GARATRONIC_PYBSTICK26_RP2040: use correct pico-sdk board cfg

samd port:
- integrate latest asf4, add help, more time funcs and uPy features
- samd_soc: allow a board to configure the low-level MCU config
- add internal flash block device, filesystem and uos support
- add Pin and LED classes, and machine.unique_id
- boards/ADAFRUIT_FEATHER_M0_EXPRESS: update for flash and pins
- boards/ADAFRUIT_ITSYBITSY_M4_EXPRESS: update for flash and pins
- boards/MINISAM_M4: update for flash and pins
- boards/ADAFRUIT_TRINKET_M0: update for flash and pins
- boards/SAMD21_XPLAINED_PRO: update for flash and pins
- boards/SEEED_WIO_TERMINAL: add new board definition
- boards/SEEED_XIAO: add new board definition
- README.md: update README to reflect new features and boards

stm32 port:
- pin: enable GPIO clock of pin if it's constructed without init
- main: don't unconditionally enable GPIO A,B,C,D clocks
- boards/VCC_GND_H743VI: add board definition for VCC_GND_H743VI
- boards/OLIMEX_E407: add Ethernet RMII support
- boards/LEGO_HUB_NO6: remove user paths from cc2564 init file
- boards: remove trailing spaces, and add newline at end of file
- add basic support for STM32H750
- add support for H7A3(Q)/H7B3(Q), and STM32H73B3I_DK board defn
- suggest putting code in main.py not boot.py
- boards/make-pins.py: allow a CPU pin to be hidden
- boards/make-pins.py: allow empty lines and comments in pins.csv
- dma: add functions for external users of DMA to enable clock
- enable LOAD_ATTR fast path, and map lookup caching on >M0
- boards: add OLIMEX H407 board definition
- enable platform module
- extended flash filesystem space to 512K on H743 boards
- boards/NUCLEO_H743ZI: enable VfsLfs2 on NUCLEO_H743ZI(2) boards
- boards: add PF11-BOOT0 to stm32f091_af.csv
- machine_i2c: use hardware I2C for STM32H7
- sdram: enforce gcc opt, and use volatile and DSB in sdram_test
- usbd_cdc_interface: allow a board to hook into USBD CDC RX events
- mpbthciport: allow a board to hook BT HCI poll functions
- pendsv: allow a board to add entries for pendsv_schedule_dispatch
- boards: add images to board.json for Adafruit and VCC_GND boards
- uart: fix race conditions and clearing status in IRQ handler
- mpconfigport.h: use the "extra" feature level
- in machine_i2s, send null samples in underflow situations
- in machine_i2s, make object reference arrays root pointers
- led: support an extra 2 LEDs in board configuration
- boards/MIKROE_CLICKER2_STM32: add more detail to board.json
- boards: add new board MikroElektronika Quail, and F427 support
- main: run optional frozen module at boot
- sdio: don't explicitly disable DMA2 on deinit of SDIO
- dma: make DMA2_Stream3 exclusive to SDIO when CYW43 enabled
- boards: build NUCLEO_WB55 and STM32F769DISC without mboot enabled
- boards: add PYBSTICK26 F411 board definition
- boards/NADHAT_PYBF405: rename board to GARATRONIC_NADHAT_F405
- usb: use a table of allowed values to simplify usb_mode get/set
- boards/NUCLEO_WB55: update rfcore_firmwre for new WS
- flashbdev: support generic flash storage config via link symbols
- boards: convert F413,F439,H743,L4xx,WB55 to new flash FS config
- add support for F479 MCUs
- include HAL MMC code in F4 builds
- boards/make-pins.py: use cpu pins to define static alt-fun macros
- boards/NUCLEO_WB55: fix LED ordering
- boards/LEGO_HUB_NO6: set filesystem label as HUB_NO6
- boards: remove stray '+' characters at start of lines in ld files
- boards: remove unused MICROPY_HW_ENABLE_TIMER config
- boards: enable MICROPY_HW_ENABLE_SERVO on various boards
- update L4 code to build with latest stm32lib and L4 HAL 1.17.0
- main: call sdcard_init when only MICROPY_HW_ENABLE_MMCARD enabled
- sdcard: support 8-bit wide SDIO bus
- sdcard: add config option to force MM card capacity
- factoryreset: init vfs flags before calling pyb_flash_init_vfs
- qspi: fix typo in address comment
- boards/make-pins.py: generate empty ADC table if needed
- boards/OLIMEX_H407: fix typo in OLIMEX H407 board.json
- network_wiznet5k: fix build error with wiznet5k and lwip enabled
- enable MICROPY_PY_USSL_FINALISER

teensy port:
- switch to use manifest.py instead of FROZEN_DIR

unix port:
- enable LOAD_ATTR fast path, and map lookup caching
- modusocket: support MP_STREAM_POLL in unix socket_ioctl
- modos: add support for uos.urandom(n)
- coverage: change remaining printf to mp_printf
- Makefile: use -Og instead of -O0 for debug builds

windows port:
- README: remove unsupported Python instructions for Cygwin
- mpconfigport.h: enable help and help("modules")
- add support for build variants to windows port
- run tests via Makefile
- appveyor: build both standard and dev variants
- appveyor: build mpy-cross only once for mingw-w64
- msvc: run qstr preprocessing phase in parallel

zephyr port:
- mphalport.h: remove unused and unimplemented C-level pin API
- increase minimum CMake version to 3.20.0
- update include path to reboot.h
- get UART console device from devicetree instead of Kconfig
- use CONFIG_USB_DEVICE_STACK for conditional USB device support
- upgrade to Zephyr v2.7.0
- modbluetooth_zephyr: provide dummy connect_cancel function
2022-02-15 12:36:26 -06:00

1770 lines
68 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George
* SPDX-FileCopyrightText: Copyright (c) 2014-2018 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/parsenum.h"
#include "py/compile.h"
#include "py/mperrno.h"
#include "py/objstr.h"
#include "py/objtuple.h"
#include "py/objlist.h"
#include "py/objtype.h"
#include "py/objmodule.h"
#include "py/objgenerator.h"
#include "py/smallint.h"
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/stackctrl.h"
#include "py/gc.h"
#include "supervisor/shared/translate.h"
#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#define DEBUG_OP_printf(...) (void)0
#endif
const mp_obj_module_t mp_module___main__ = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&MP_STATE_VM(dict_main),
};
void mp_init(void) {
qstr_init();
// no pending exceptions to start with
MP_STATE_THREAD(mp_pending_exception) = MP_OBJ_NULL;
#if MICROPY_ENABLE_SCHEDULER
MP_STATE_VM(sched_state) = MP_SCHED_IDLE;
MP_STATE_VM(sched_idx) = 0;
MP_STATE_VM(sched_len) = 0;
#endif
#if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
mp_init_emergency_exception_buf();
#endif
#if MICROPY_KBD_EXCEPTION
// initialise the exception object for raising KeyboardInterrupt
MP_STATE_VM(mp_kbd_exception).base.type = &mp_type_KeyboardInterrupt;
MP_STATE_VM(mp_kbd_exception).args = (mp_obj_tuple_t *)&mp_const_empty_tuple_obj;
MP_STATE_VM(mp_kbd_exception).traceback = (mp_obj_traceback_t *)&mp_const_empty_traceback_obj;
#endif
MP_STATE_VM(mp_reload_exception).base.type = &mp_type_ReloadException;
MP_STATE_VM(mp_reload_exception).args = (mp_obj_tuple_t *)&mp_const_empty_tuple_obj;
MP_STATE_VM(mp_reload_exception).traceback = (mp_obj_traceback_t *)&mp_const_empty_traceback_obj;
// call port specific initialization if any
#ifdef MICROPY_PORT_INIT_FUNC
MICROPY_PORT_INIT_FUNC;
#endif
#if MICROPY_ENABLE_COMPILER
// optimization disabled by default
MP_STATE_VM(mp_optimise_value) = 0;
#if MICROPY_EMIT_NATIVE
MP_STATE_VM(default_emit_opt) = MP_EMIT_OPT_NONE;
#endif
#endif
// init global module dict
mp_obj_dict_init(&MP_STATE_VM(mp_loaded_modules_dict), MICROPY_LOADED_MODULES_DICT_SIZE);
// initialise the __main__ module
mp_obj_dict_init(&MP_STATE_VM(dict_main), 1);
mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(dict_main)), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
mp_locals_set(&MP_STATE_VM(dict_main));
mp_globals_set(&MP_STATE_VM(dict_main));
#if MICROPY_CAN_OVERRIDE_BUILTINS
// start with no extensions to builtins
MP_STATE_VM(mp_module_builtins_override_dict) = NULL;
#endif
#if MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE
MP_STATE_VM(track_reloc_code_list) = MP_OBJ_NULL;
#endif
#ifdef MICROPY_FSUSERMOUNT
// zero out the pointers to the user-mounted devices
memset(MP_STATE_VM(fs_user_mount) + MICROPY_FATFS_NUM_PERSISTENT, 0,
sizeof(MP_STATE_VM(fs_user_mount)) - MICROPY_FATFS_NUM_PERSISTENT);
#endif
#if MICROPY_PY_SYS_PATH_ARGV_DEFAULTS
mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_path), 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
#if MICROPY_MODULE_FROZEN
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__dot_frozen));
#endif
mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_argv), 0);
#endif
#if MICROPY_PY_SYS_ATEXIT
MP_STATE_VM(sys_exitfunc) = mp_const_none;
#endif
#if MICROPY_PY_SYS_SETTRACE
MP_STATE_THREAD(prof_trace_callback) = MP_OBJ_NULL;
MP_STATE_THREAD(prof_callback_is_executing) = false;
MP_STATE_THREAD(current_code_state) = NULL;
#endif
#if MICROPY_PY_THREAD_GIL
mp_thread_mutex_init(&MP_STATE_VM(gil_mutex));
#endif
// call port specific initialization if any
#ifdef MICROPY_PORT_INIT_FUNC
MICROPY_PORT_INIT_FUNC;
#endif
MP_THREAD_GIL_ENTER();
}
void mp_deinit(void) {
MP_THREAD_GIL_EXIT();
// call port specific deinitialization if any
#ifdef MICROPY_PORT_DEINIT_FUNC
MICROPY_PORT_DEINIT_FUNC;
#endif
}
mp_obj_t MICROPY_WRAP_MP_LOAD_NAME(mp_load_name)(qstr qst) {
// logic: search locals, globals, builtins
DEBUG_OP_printf("load name %s\n", qstr_str(qst));
// If we're at the outer scope (locals == globals), dispatch to load_global right away
if (mp_locals_get() != mp_globals_get()) {
mp_map_elem_t *elem = mp_map_lookup(&mp_locals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
return mp_load_global(qst);
}
mp_obj_t MICROPY_WRAP_MP_LOAD_GLOBAL(mp_load_global)(qstr qst) {
// logic: search globals, builtins
DEBUG_OP_printf("load global %s\n", qstr_str(qst));
mp_map_elem_t *elem = mp_map_lookup(&mp_globals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
if (elem == NULL) {
#if MICROPY_CAN_OVERRIDE_BUILTINS
if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
// lookup in additional dynamic table of builtins first
elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
#endif
elem = mp_map_lookup((mp_map_t *)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
if (elem == NULL) {
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_msg(&mp_type_NameError, MP_ERROR_TEXT("name not defined"));
#else
mp_raise_msg_varg(&mp_type_NameError, MP_ERROR_TEXT("name '%q' is not defined"), qst);
#endif
}
}
return elem->value;
}
mp_obj_t mp_load_build_class(void) {
DEBUG_OP_printf("load_build_class\n");
#if MICROPY_CAN_OVERRIDE_BUILTINS
if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
// lookup in additional dynamic table of builtins first
mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
#endif
return MP_OBJ_FROM_PTR(&mp_builtin___build_class___obj);
}
void PLACE_IN_ITCM(mp_store_name)(qstr qst, mp_obj_t obj) {
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj);
mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst), obj);
}
void mp_delete_name(qstr qst) {
DEBUG_OP_printf("delete name %s\n", qstr_str(qst));
// TODO convert KeyError to NameError if qst not found
mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst));
}
void PLACE_IN_ITCM(mp_store_global)(qstr qst, mp_obj_t obj) {
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj);
mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst), obj);
}
void mp_delete_global(qstr qst) {
DEBUG_OP_printf("delete global %s\n", qstr_str(qst));
// TODO convert KeyError to NameError if qst not found
mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst));
}
mp_obj_t mp_unary_op(mp_unary_op_t op, mp_obj_t arg) {
DEBUG_OP_printf("unary " UINT_FMT " %q %p\n", op, mp_unary_op_method_name[op], arg);
if (op == MP_UNARY_OP_NOT) {
// "not x" is the negative of whether "x" is true per Python semantics
return mp_obj_new_bool(mp_obj_is_true(arg) == 0);
} else if (mp_obj_is_small_int(arg)) {
mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
switch (op) {
case MP_UNARY_OP_BOOL:
return mp_obj_new_bool(val != 0);
case MP_UNARY_OP_HASH:
return arg;
case MP_UNARY_OP_POSITIVE:
case MP_UNARY_OP_INT:
return arg;
case MP_UNARY_OP_NEGATIVE:
// check for overflow
if (val == MP_SMALL_INT_MIN) {
return mp_obj_new_int(-val);
} else {
return MP_OBJ_NEW_SMALL_INT(-val);
}
case MP_UNARY_OP_ABS:
if (val >= 0) {
return arg;
} else if (val == MP_SMALL_INT_MIN) {
// check for overflow
return mp_obj_new_int(-val);
} else {
return MP_OBJ_NEW_SMALL_INT(-val);
}
default:
assert(op == MP_UNARY_OP_INVERT);
return MP_OBJ_NEW_SMALL_INT(~val);
}
} else if (op == MP_UNARY_OP_HASH && mp_obj_is_str_or_bytes(arg)) {
// fast path for hashing str/bytes
GET_STR_HASH(arg, h);
if (h == 0) {
GET_STR_DATA_LEN(arg, data, len);
h = qstr_compute_hash(data, len);
}
return MP_OBJ_NEW_SMALL_INT(h);
} else {
const mp_obj_type_t *type = mp_obj_get_type(arg);
mp_unary_op_fun_t unary_op = mp_type_get_unary_op_slot(type);
if (unary_op != NULL) {
mp_obj_t result = unary_op(op, arg);
if (result != MP_OBJ_NULL) {
return result;
}
}
if (op == MP_UNARY_OP_BOOL) {
// Type doesn't have unary_op (or didn't handle MP_UNARY_OP_BOOL),
// so is implicitly True as this code path is impossible to reach
// if arg==mp_const_none.
return mp_const_true;
}
// With MP_UNARY_OP_INT, mp_unary_op() becomes a fallback for mp_obj_get_int().
// In this case provide a more focused error message to not confuse, e.g. chr(1.0)
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
if (op == MP_UNARY_OP_INT) {
mp_raise_TypeError(MP_ERROR_TEXT("can't convert to int"));
} else {
mp_raise_TypeError(MP_ERROR_TEXT("unsupported type for operator"));
}
#else
if (op == MP_UNARY_OP_INT) {
mp_raise_TypeError_varg(MP_ERROR_TEXT("can't convert %q to int"), mp_obj_get_type_qstr(arg));
} else {
mp_raise_TypeError_varg(MP_ERROR_TEXT("unsupported type for %q: '%q'"),
mp_unary_op_method_name[op], mp_obj_get_type_qstr(arg));
}
#endif
}
}
mp_obj_t MICROPY_WRAP_MP_BINARY_OP(mp_binary_op)(mp_binary_op_t op, mp_obj_t lhs, mp_obj_t rhs) {
DEBUG_OP_printf("binary " UINT_FMT " %q %p %p\n", op, mp_binary_op_method_name[op], lhs, rhs);
// TODO correctly distinguish inplace operators for mutable objects
// lookup logic that CPython uses for +=:
// check for implemented +=
// then check for implemented +
// then check for implemented seq.inplace_concat
// then check for implemented seq.concat
// then fail
// note that list does not implement + or +=, so that inplace_concat is reached first for +=
// deal with is
if (op == MP_BINARY_OP_IS) {
return mp_obj_new_bool(lhs == rhs);
}
// deal with == and != for all types
if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
// mp_obj_equal_not_equal supports a bunch of shortcuts
return mp_obj_equal_not_equal(op, lhs, rhs);
}
// deal with exception_match for all types
if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
// rhs must be issubclass(rhs, BaseException)
if (mp_obj_is_exception_type(rhs)) {
if (mp_obj_exception_match(lhs, rhs)) {
return mp_const_true;
} else {
return mp_const_false;
}
} else if (mp_obj_is_type(rhs, &mp_type_tuple)) {
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(rhs);
for (size_t i = 0; i < tuple->len; i++) {
rhs = tuple->items[i];
if (!mp_obj_is_exception_type(rhs)) {
goto unsupported_op;
}
if (mp_obj_exception_match(lhs, rhs)) {
return mp_const_true;
}
}
return mp_const_false;
}
goto unsupported_op;
}
if (mp_obj_is_small_int(lhs)) {
mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
if (mp_obj_is_small_int(rhs)) {
mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
// This is a binary operation: lhs_val op rhs_val
// We need to be careful to handle overflow; see CERT INT32-C
// Operations that can overflow:
// + result always fits in mp_int_t, then handled by SMALL_INT check
// - result always fits in mp_int_t, then handled by SMALL_INT check
// * checked explicitly
// / if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
// % if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
// << checked explicitly
switch (op) {
case MP_BINARY_OP_OR:
case MP_BINARY_OP_INPLACE_OR:
lhs_val |= rhs_val;
break;
case MP_BINARY_OP_XOR:
case MP_BINARY_OP_INPLACE_XOR:
lhs_val ^= rhs_val;
break;
case MP_BINARY_OP_AND:
case MP_BINARY_OP_INPLACE_AND:
lhs_val &= rhs_val;
break;
case MP_BINARY_OP_LSHIFT:
case MP_BINARY_OP_INPLACE_LSHIFT: {
if (rhs_val < 0) {
// negative shift not allowed
mp_raise_ValueError(MP_ERROR_TEXT("negative shift count"));
} else if (rhs_val >= (mp_int_t)(sizeof(lhs_val) * MP_BITS_PER_BYTE)
|| lhs_val > (MP_SMALL_INT_MAX >> rhs_val)
|| lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
// left-shift will overflow, so use higher precision integer
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
} else {
// use standard precision
lhs_val = (mp_uint_t)lhs_val << rhs_val;
}
break;
}
case MP_BINARY_OP_RSHIFT:
case MP_BINARY_OP_INPLACE_RSHIFT:
if (rhs_val < 0) {
// negative shift not allowed
mp_raise_ValueError(MP_ERROR_TEXT("negative shift count"));
} else {
// standard precision is enough for right-shift
if (rhs_val >= (mp_int_t)(sizeof(lhs_val) * MP_BITS_PER_BYTE)) {
// Shifting to big amounts is underfined behavior
// in C and is CPU-dependent; propagate sign bit.
rhs_val = sizeof(lhs_val) * MP_BITS_PER_BYTE - 1;
}
lhs_val >>= rhs_val;
}
break;
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_INPLACE_ADD:
lhs_val += rhs_val;
break;
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_INPLACE_SUBTRACT:
lhs_val -= rhs_val;
break;
case MP_BINARY_OP_MULTIPLY:
case MP_BINARY_OP_INPLACE_MULTIPLY: {
// If long long type exists and is larger than mp_int_t, then
// we can use the following code to perform overflow-checked multiplication.
// Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
#if 0
// compute result using long long precision
long long res = (long long)lhs_val * (long long)rhs_val;
if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
// result overflowed SMALL_INT, so return higher precision integer
return mp_obj_new_int_from_ll(res);
} else {
// use standard precision
lhs_val = (mp_int_t)res;
}
#endif
if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
// use higher precision
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
} else {
// use standard precision
return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
}
}
case MP_BINARY_OP_FLOOR_DIVIDE:
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
if (rhs_val == 0) {
goto zero_division;
}
lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
break;
#if MICROPY_PY_BUILTINS_FLOAT
case MP_BINARY_OP_TRUE_DIVIDE:
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
if (rhs_val == 0) {
goto zero_division;
}
return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
#endif
case MP_BINARY_OP_MODULO:
case MP_BINARY_OP_INPLACE_MODULO: {
if (rhs_val == 0) {
goto zero_division;
}
lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
break;
}
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_INPLACE_POWER:
if (rhs_val < 0) {
#if MICROPY_PY_BUILTINS_FLOAT
return mp_obj_float_binary_op(op, (mp_float_t)lhs_val, rhs);
#else
mp_raise_ValueError(MP_ERROR_TEXT("negative power with no float support"));
#endif
} else {
mp_int_t ans = 1;
while (rhs_val > 0) {
if (rhs_val & 1) {
if (mp_small_int_mul_overflow(ans, lhs_val)) {
goto power_overflow;
}
ans *= lhs_val;
}
if (rhs_val == 1) {
break;
}
rhs_val /= 2;
if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
goto power_overflow;
}
lhs_val *= lhs_val;
}
lhs_val = ans;
}
break;
power_overflow:
// use higher precision
lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
goto generic_binary_op;
case MP_BINARY_OP_DIVMOD: {
if (rhs_val == 0) {
goto zero_division;
}
// to reduce stack usage we don't pass a temp array of the 2 items
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val));
tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val));
return MP_OBJ_FROM_PTR(tuple);
}
case MP_BINARY_OP_LESS:
return mp_obj_new_bool(lhs_val < rhs_val);
case MP_BINARY_OP_MORE:
return mp_obj_new_bool(lhs_val > rhs_val);
case MP_BINARY_OP_LESS_EQUAL:
return mp_obj_new_bool(lhs_val <= rhs_val);
case MP_BINARY_OP_MORE_EQUAL:
return mp_obj_new_bool(lhs_val >= rhs_val);
default:
goto unsupported_op;
}
// This is an inlined version of mp_obj_new_int, for speed
if (MP_SMALL_INT_FITS(lhs_val)) {
return MP_OBJ_NEW_SMALL_INT(lhs_val);
} else {
return mp_obj_new_int_from_ll(lhs_val);
}
#if MICROPY_PY_BUILTINS_FLOAT
} else if (mp_obj_is_float(rhs)) {
mp_obj_t res = mp_obj_float_binary_op(op, (mp_float_t)lhs_val, rhs);
if (res == MP_OBJ_NULL) {
goto unsupported_op;
} else {
return res;
}
#endif
#if MICROPY_PY_BUILTINS_COMPLEX
} else if (mp_obj_is_type(rhs, &mp_type_complex)) {
mp_obj_t res = mp_obj_complex_binary_op(op, (mp_float_t)lhs_val, 0, rhs);
if (res == MP_OBJ_NULL) {
goto unsupported_op;
} else {
return res;
}
#endif
}
}
// Convert MP_BINARY_OP_IN to MP_BINARY_OP_CONTAINS with swapped args.
if (op == MP_BINARY_OP_IN) {
op = MP_BINARY_OP_CONTAINS;
mp_obj_t temp = lhs;
lhs = rhs;
rhs = temp;
}
// generic binary_op supplied by type
const mp_obj_type_t *type;
generic_binary_op:
type = mp_obj_get_type(lhs);
mp_binary_op_fun_t binary_op = mp_type_get_binary_op_slot(type);
if (binary_op != NULL) {
mp_obj_t result = binary_op(op, lhs, rhs);
if (result != MP_OBJ_NULL) {
return result;
}
}
#if MICROPY_PY_REVERSE_SPECIAL_METHODS
if (op >= MP_BINARY_OP_OR && op <= MP_BINARY_OP_POWER) {
mp_obj_t t = rhs;
rhs = lhs;
lhs = t;
op += MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR;
goto generic_binary_op;
} else if (op >= MP_BINARY_OP_REVERSE_OR) {
// Convert __rop__ back to __op__ for error message
mp_obj_t t = rhs;
rhs = lhs;
lhs = t;
op -= MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR;
}
#endif
if (op == MP_BINARY_OP_CONTAINS) {
// If type didn't support containment then explicitly walk the iterator.
// mp_getiter will raise the appropriate exception if lhs is not iterable.
mp_obj_iter_buf_t iter_buf;
mp_obj_t iter = mp_getiter(lhs, &iter_buf);
mp_obj_t next;
while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
if (mp_obj_equal(next, rhs)) {
return mp_const_true;
}
}
return mp_const_false;
}
unsupported_op:
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_TypeError(MP_ERROR_TEXT("unsupported type for operator"));
#else
mp_raise_TypeError_varg(
MP_ERROR_TEXT("unsupported types for %q: '%q', '%q'"),
mp_binary_op_method_name[op], mp_obj_get_type_qstr(lhs), mp_obj_get_type_qstr(rhs));
#endif
zero_division:
mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("division by zero"));
}
mp_obj_t mp_call_function_0(mp_obj_t fun) {
return mp_call_function_n_kw(fun, 0, 0, NULL);
}
mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
return mp_call_function_n_kw(fun, 1, 0, &arg);
}
mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
mp_obj_t args[2];
args[0] = arg1;
args[1] = arg2;
return mp_call_function_n_kw(fun, 2, 0, args);
}
// args contains, eg: arg0 arg1 key0 value0 key1 value1
mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// TODO improve this: fun object can specify its type and we parse here the arguments,
// passing to the function arrays of fixed and keyword arguments
DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args);
// get the type
const mp_obj_type_t *type = mp_obj_get_type(fun_in);
// do the call
mp_call_fun_t call = mp_type_get_call_slot(type);
if (call) {
return call(fun_in, n_args, n_kw, args);
}
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_TypeError(MP_ERROR_TEXT("object not callable"));
#else
mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not callable"), mp_obj_get_type_qstr(fun_in));
#endif
}
// args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1)
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
mp_obj_t mp_call_method_n_kw(size_t n_args, size_t n_kw, const mp_obj_t *args) {
DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args);
int adjust = (args[1] == MP_OBJ_NULL) ? 0 : 1;
return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
}
// This function only needs to be exposed externally when in stackless mode.
#if !MICROPY_STACKLESS
STATIC
#endif
void PLACE_IN_ITCM(mp_call_prepare_args_n_kw_var)(bool have_self, size_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) {
mp_obj_t fun = *args++;
mp_obj_t self = MP_OBJ_NULL;
if (have_self) {
self = *args++; // may be MP_OBJ_NULL
}
uint n_args = n_args_n_kw & 0xff;
uint n_kw = (n_args_n_kw >> 8) & 0xff;
mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // may be MP_OBJ_NULL
mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // may be MP_OBJ_NULL
DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);
// We need to create the following array of objects:
// args[0 .. n_args] unpacked(pos_seq) args[n_args .. n_args + 2 * n_kw] unpacked(kw_dict)
// TODO: optimize one day to avoid constructing new arg array? Will be hard.
// The new args array
mp_obj_t *args2;
uint args2_alloc;
uint args2_len = 0;
// Try to get a hint for the size of the kw_dict
uint kw_dict_len = 0;
if (kw_dict != MP_OBJ_NULL && mp_obj_is_type(kw_dict, &mp_type_dict)) {
kw_dict_len = mp_obj_dict_len(kw_dict);
}
// Extract the pos_seq sequence to the new args array.
// Note that it can be arbitrary iterator.
if (pos_seq == MP_OBJ_NULL) {
// no sequence
// allocate memory for the new array of args
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed pos args
mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
args2_len += n_args;
} else if (mp_obj_is_type(pos_seq, &mp_type_tuple) || mp_obj_is_type(pos_seq, &mp_type_list)) {
// optimise the case of a tuple and list
// get the items
size_t len;
mp_obj_t *items;
mp_obj_get_array(pos_seq, &len, &items);
// allocate memory for the new array of args
args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed and variable position args
mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
args2_len += n_args + len;
} else {
// generic iterator
// allocate memory for the new array of args
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed position args
mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
args2_len += n_args;
// extract the variable position args from the iterator
mp_obj_iter_buf_t iter_buf;
mp_obj_t iterable = mp_getiter(pos_seq, &iter_buf);
mp_obj_t item;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if (args2_len >= args2_alloc) {
args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), args2_alloc * 2 * sizeof(mp_obj_t));
args2_alloc *= 2;
}
args2[args2_len++] = item;
}
}
// The size of the args2 array now is the number of positional args.
uint pos_args_len = args2_len;
// Copy the fixed kw args.
mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
args2_len += 2 * n_kw;
// Extract (key,value) pairs from kw_dict dictionary and append to args2.
// Note that it can be arbitrary iterator.
if (kw_dict == MP_OBJ_NULL) {
// pass
} else if (mp_obj_is_type(kw_dict, &mp_type_dict)) {
// dictionary
mp_map_t *map = mp_obj_dict_get_map(kw_dict);
assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
for (size_t i = 0; i < map->alloc; i++) {
if (mp_map_slot_is_filled(map, i)) {
// the key must be a qstr, so intern it if it's a string
mp_obj_t key = map->table[i].key;
if (!mp_obj_is_qstr(key)) {
key = mp_obj_str_intern_checked(key);
}
args2[args2_len++] = key;
args2[args2_len++] = map->table[i].value;
}
}
} else {
// generic mapping:
// - call keys() to get an iterable of all keys in the mapping
// - call __getitem__ for each key to get the corresponding value
// get the keys iterable
mp_obj_t dest[3];
mp_load_method(kw_dict, MP_QSTR_keys, dest);
mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest), NULL);
mp_obj_t key;
while ((key = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
// expand size of args array if needed
if (args2_len + 1 >= args2_alloc) {
uint new_alloc = args2_alloc * 2;
if (new_alloc < 4) {
new_alloc = 4;
}
args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), new_alloc * sizeof(mp_obj_t));
args2_alloc = new_alloc;
}
// the key must be a qstr, so intern it if it's a string
if (!mp_obj_is_qstr(key)) {
key = mp_obj_str_intern_checked(key);
}
// get the value corresponding to the key
mp_load_method(kw_dict, MP_QSTR___getitem__, dest);
dest[2] = key;
mp_obj_t value = mp_call_method_n_kw(1, 0, dest);
// store the key/value pair in the argument array
args2[args2_len++] = key;
args2[args2_len++] = value;
}
}
out_args->fun = fun;
out_args->args = args2;
out_args->n_args = pos_args_len;
out_args->n_kw = (args2_len - pos_args_len) / 2;
out_args->n_alloc = args2_alloc;
}
mp_obj_t mp_call_method_n_kw_var(bool have_self, size_t n_args_n_kw, const mp_obj_t *args) {
mp_call_args_t out_args;
mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args);
mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args);
mp_nonlocal_free(out_args.args, out_args.n_alloc * sizeof(mp_obj_t));
return res;
}
// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_sequence(mp_obj_t seq_in, size_t num, mp_obj_t *items) {
size_t seq_len;
if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) {
mp_obj_t *seq_items;
mp_obj_get_array(seq_in, &seq_len, &seq_items);
if (seq_len < num) {
goto too_short;
} else if (seq_len > num) {
goto too_long;
}
for (size_t i = 0; i < num; i++) {
items[i] = seq_items[num - 1 - i];
}
} else {
mp_obj_iter_buf_t iter_buf;
mp_obj_t iterable = mp_getiter(seq_in, &iter_buf);
for (seq_len = 0; seq_len < num; seq_len++) {
mp_obj_t el = mp_iternext(iterable);
if (el == MP_OBJ_STOP_ITERATION) {
goto too_short;
}
items[num - 1 - seq_len] = el;
}
if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
goto too_long;
}
}
return;
too_short:
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack"));
#else
mp_raise_ValueError_varg(MP_ERROR_TEXT("need more than %d values to unpack"),
(int)seq_len);
#endif
too_long:
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack"));
#else
mp_raise_ValueError_varg(MP_ERROR_TEXT("too many values to unpack (expected %d)"),
(int)num);
#endif
}
// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_ex(mp_obj_t seq_in, size_t num_in, mp_obj_t *items) {
size_t num_left = num_in & 0xff;
size_t num_right = (num_in >> 8) & 0xff;
DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right);
size_t seq_len;
if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) {
// Make the seq variable volatile so the compiler keeps a reference to it,
// since if it's a tuple then seq_items points to the interior of the GC cell
// and mp_obj_new_list may trigger a GC which doesn't trace this and reclaims seq.
volatile mp_obj_t seq = seq_in;
mp_obj_t *seq_items;
mp_obj_get_array(seq, &seq_len, &seq_items);
if (seq_len < num_left + num_right) {
goto too_short;
}
for (size_t i = 0; i < num_right; i++) {
items[i] = seq_items[seq_len - 1 - i];
}
items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
for (size_t i = 0; i < num_left; i++) {
items[num_right + 1 + i] = seq_items[num_left - 1 - i];
}
seq = MP_OBJ_NULL;
} else {
// Generic iterable; this gets a bit messy: we unpack known left length to the
// items destination array, then the rest to a dynamically created list. Once the
// iterable is exhausted, we take from this list for the right part of the items.
// TODO Improve to waste less memory in the dynamically created list.
mp_obj_t iterable = mp_getiter(seq_in, NULL);
mp_obj_t item;
for (seq_len = 0; seq_len < num_left; seq_len++) {
item = mp_iternext(iterable);
if (item == MP_OBJ_STOP_ITERATION) {
goto too_short;
}
items[num_left + num_right + 1 - 1 - seq_len] = item;
}
mp_obj_list_t *rest = MP_OBJ_TO_PTR(mp_obj_new_list(0, NULL));
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
mp_obj_list_append(MP_OBJ_FROM_PTR(rest), item);
}
if (rest->len < num_right) {
goto too_short;
}
items[num_right] = MP_OBJ_FROM_PTR(rest);
for (size_t i = 0; i < num_right; i++) {
items[num_right - 1 - i] = rest->items[rest->len - num_right + i];
}
mp_obj_list_set_len(MP_OBJ_FROM_PTR(rest), rest->len - num_right);
}
return;
too_short:
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_ValueError(MP_ERROR_TEXT("wrong number of values to unpack"));
#else
mp_raise_ValueError_varg(MP_ERROR_TEXT("need more than %d values to unpack"),
(int)seq_len);
#endif
}
mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
// use load_method
mp_obj_t dest[2];
mp_load_method(base, attr, dest);
if (dest[1] == MP_OBJ_NULL) {
// load_method returned just a normal attribute
return dest[0];
} else {
// load_method returned a method, so build a bound method object
return mp_obj_new_bound_meth(dest[0], dest[1]);
}
}
#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
// The following "checked fun" type is local to the mp_convert_member_lookup
// function, and serves to check that the first argument to a builtin function
// has the correct type.
typedef struct _mp_obj_checked_fun_t {
mp_obj_base_t base;
const mp_obj_type_t *type;
mp_obj_t fun;
} mp_obj_checked_fun_t;
STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_obj_checked_fun_t *self = MP_OBJ_TO_PTR(self_in);
if (n_args > 0) {
const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]);
if (arg0_type != self->type) {
if (MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED) {
mp_raise_TypeError(MP_ERROR_TEXT("argument has wrong type"));
} else {
mp_raise_TypeError_varg(MP_ERROR_TEXT("argument should be a '%q' not a '%q'"),
self->type->name, arg0_type->name);
}
}
}
return mp_call_function_n_kw(self->fun, n_args, n_kw, args);
}
STATIC const mp_obj_type_t mp_type_checked_fun = {
{ &mp_type_type },
.flags = MP_TYPE_FLAG_BINDS_SELF | MP_TYPE_FLAG_EXTENDED,
.name = MP_QSTR_function,
MP_TYPE_EXTENDED_FIELDS(
.call = checked_fun_call,
)
};
STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) {
mp_obj_checked_fun_t *o = m_new_obj(mp_obj_checked_fun_t);
o->base.type = &mp_type_checked_fun;
o->type = type;
o->fun = fun;
return MP_OBJ_FROM_PTR(o);
}
#endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
// Given a member that was extracted from an instance, convert it correctly
// and put the result in the dest[] array for a possible method call.
// Conversion means dealing with static/class methods, callables, and values.
// see http://docs.python.org/3/howto/descriptor.html
// and also https://mail.python.org/pipermail/python-dev/2015-March/138950.html
void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) {
if (mp_obj_is_obj(member)) {
const mp_obj_type_t *m_type = ((mp_obj_base_t *)MP_OBJ_TO_PTR(member))->type;
if (m_type->flags & MP_TYPE_FLAG_BINDS_SELF) {
// `member` is a function that binds self as its first argument.
if (m_type->flags & MP_TYPE_FLAG_BUILTIN_FUN) {
// `member` is a built-in function, which has special behaviour.
if (mp_obj_is_instance_type(type)) {
// Built-in functions on user types always behave like a staticmethod.
dest[0] = member;
}
#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
else if (self == MP_OBJ_NULL && type != &mp_type_object) {
// `member` is a built-in method without a first argument, so wrap
// it in a type checker that will check self when it's supplied.
// Note that object will do its own checking so shouldn't be wrapped.
dest[0] = mp_obj_new_checked_fun(type, member);
}
#endif
else {
// Return a (built-in) bound method, with self being this object.
dest[0] = member;
dest[1] = self;
}
} else {
// Return a bound method, with self being this object.
dest[0] = member;
dest[1] = self;
}
} else if (m_type == &mp_type_staticmethod) {
// `member` is a staticmethod, return the function that it wraps.
dest[0] = ((mp_obj_static_class_method_t *)MP_OBJ_TO_PTR(member))->fun;
} else if (m_type == &mp_type_classmethod) {
// `member` is a classmethod, return a bound method with self being the type of
// this object. This type should be the type of the original instance, not the
// base type (which is what is passed in the `type` argument to this function).
if (self != MP_OBJ_NULL) {
type = mp_obj_get_type(self);
}
dest[0] = ((mp_obj_static_class_method_t *)MP_OBJ_TO_PTR(member))->fun;
dest[1] = MP_OBJ_FROM_PTR(type);
#if MICROPY_PY_BUILTINS_PROPERTY
// If self is MP_OBJ_NULL, we looking at the class itself, not an instance.
} else if (mp_obj_is_type(member, &mp_type_property) && mp_obj_is_native_type(type) && self != MP_OBJ_NULL) {
// object member is a property; delegate the load to the property
// Note: This is an optimisation for code size and execution time.
// The proper way to do it is have the functionality just below
// in a __get__ method of the property object, and then it would
// be called by the descriptor code down below. But that way
// requires overhead for the nested mp_call's and overhead for
// the code.
const mp_obj_t *proxy = mp_obj_property_get(member);
if (proxy[0] == mp_const_none) {
mp_raise_AttributeError(MP_ERROR_TEXT("unreadable attribute"));
} else {
dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self);
}
#endif
} else {
// `member` is a value, so just return that value.
dest[0] = member;
}
} else {
// `member` is a value, so just return that value.
dest[0] = member;
}
}
// no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
// method attribute found, returns: dest[0] == <method>, dest[1] == <self>
void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) {
// clear output to indicate no attribute/method found yet
dest[0] = MP_OBJ_NULL;
dest[1] = MP_OBJ_NULL;
// Note: the specific case of obj being an instance type is fast-path'ed in the VM
// for the MP_BC_LOAD_ATTR opcode. Instance types handle type->attr and look up directly
// in their member's map.
// get the type
const mp_obj_type_t *type = mp_obj_get_type(obj);
// look for built-in names
#if MICROPY_CPYTHON_COMPAT
if (attr == MP_QSTR___class__) {
// a.__class__ is equivalent to type(a)
dest[0] = MP_OBJ_FROM_PTR(type);
return;
}
#endif
if (attr == MP_QSTR___next__ && mp_type_get_iternext_slot(type) != NULL) {
dest[0] = MP_OBJ_FROM_PTR(&mp_builtin_next_obj);
dest[1] = obj;
return;
}
mp_attr_fun_t attr_fun = mp_type_get_attr_slot(type);
if (attr_fun != NULL) {
// this type can do its own load, so call it
attr_fun(obj, attr, dest);
// If type->attr has set dest[1] = MP_OBJ_SENTINEL, we should proceed
// with lookups below (i.e. in locals_dict). If not, return right away.
if (dest[1] != MP_OBJ_SENTINEL) {
return;
}
// Clear the fail flag set by type->attr so it's like it never ran.
dest[1] = MP_OBJ_NULL;
}
if (type->locals_dict != NULL) {
// generic method lookup
// this is a lookup in the object (ie not class or type)
assert(type->locals_dict->base.type == &mp_type_dict); // MicroPython restriction, for now
mp_map_t *locals_map = &type->locals_dict->map;
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
mp_convert_member_lookup(obj, type, elem->value, dest);
}
return;
}
}
void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
mp_load_method_maybe(base, attr, dest);
if (dest[0] == MP_OBJ_NULL) {
// no attribute/method called attr
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_AttributeError(MP_ERROR_TEXT("no such attribute"));
#else
// following CPython, we give a more detailed error message for type objects
if (mp_obj_is_type(base, &mp_type_type)) {
mp_raise_msg_varg(&mp_type_AttributeError,
MP_ERROR_TEXT("type object '%q' has no attribute '%q'"),
((mp_obj_type_t *)MP_OBJ_TO_PTR(base))->name, attr);
} else {
mp_raise_msg_varg(&mp_type_AttributeError,
MP_ERROR_TEXT("'%s' object has no attribute '%q'"),
mp_obj_get_type_str(base), attr);
}
#endif
}
}
// Acts like mp_load_method_maybe but catches AttributeError, and all other exceptions if requested
void mp_load_method_protected(mp_obj_t obj, qstr attr, mp_obj_t *dest, bool catch_all_exc) {
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_load_method_maybe(obj, attr, dest);
nlr_pop();
} else {
if (!catch_all_exc
&& !mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type),
MP_OBJ_FROM_PTR(&mp_type_AttributeError))) {
// Re-raise the exception
nlr_raise(MP_OBJ_FROM_PTR(nlr.ret_val));
}
}
}
void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
const mp_obj_type_t *type = mp_obj_get_type(base);
mp_attr_fun_t attr_fun = mp_type_get_attr_slot(type);
if (attr_fun != NULL) {
mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value};
attr_fun(base, attr, dest);
if (dest[0] == MP_OBJ_NULL) {
// success
return;
}
#if MICROPY_PY_BUILTINS_PROPERTY
} else if (type->locals_dict != NULL) {
// generic method lookup
// this is a lookup in the object (ie not class or type)
assert(type->locals_dict->base.type == &mp_type_dict); // Micro Python restriction, for now
mp_map_t *locals_map = &type->locals_dict->map;
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
// If base is MP_OBJ_NULL, we looking at the class itself, not an instance.
if (elem != NULL && mp_obj_is_type(elem->value, &mp_type_property) && base != MP_OBJ_NULL) {
// attribute exists and is a property; delegate the store/delete
// Note: This is an optimisation for code size and execution time.
// The proper way to do it is have the functionality just below in
// a __set__/__delete__ method of the property object, and then it
// would be called by the descriptor code down below. But that way
// requires overhead for the nested mp_call's and overhead for
// the code.
const mp_obj_t *proxy = mp_obj_property_get(elem->value);
mp_obj_t dest[2] = {base, value};
if (value == MP_OBJ_NULL) {
// delete attribute
if (proxy[2] != mp_const_none) {
mp_call_function_n_kw(proxy[2], 1, 0, dest);
return;
}
} else if (proxy[1] != mp_const_none) {
mp_call_function_n_kw(proxy[1], 2, 0, dest);
return;
}
}
#endif
}
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_AttributeError(MP_ERROR_TEXT("no such attribute"));
#else
mp_raise_msg_varg(&mp_type_AttributeError,
MP_ERROR_TEXT("'%s' object has no attribute '%q'"),
mp_obj_get_type_str(base), attr);
#endif
}
mp_obj_t mp_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) {
assert(o_in);
const mp_obj_type_t *type = mp_obj_get_type(o_in);
mp_getiter_fun_t getiter = mp_type_get_getiter_slot(type);
// Check for native getiter which is the identity. We handle this case explicitly
// so we don't unnecessarily allocate any RAM for the iter_buf, which won't be used.
if (getiter == mp_identity_getiter) {
return o_in;
}
// check for native getiter (corresponds to __iter__)
if (getiter != NULL) {
if (iter_buf == NULL && getiter != mp_obj_instance_getiter) {
// if caller did not provide a buffer then allocate one on the heap
// mp_obj_instance_getiter is special, it will allocate only if needed
iter_buf = m_new_obj(mp_obj_iter_buf_t);
}
mp_obj_t iter = getiter(o_in, iter_buf);
if (iter != MP_OBJ_NULL) {
return iter;
}
}
// check for __getitem__
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __getitem__ exists, create and return an iterator
if (iter_buf == NULL) {
// if caller did not provide a buffer then allocate one on the heap
iter_buf = m_new_obj(mp_obj_iter_buf_t);
}
return mp_obj_new_getitem_iter(dest, iter_buf);
}
// object not iterable
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_TypeError(MP_ERROR_TEXT("object not iterable"));
#else
mp_raise_TypeError_varg(
MP_ERROR_TEXT("'%q' object is not iterable"), mp_obj_get_type_qstr(o_in));
#endif
}
// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
// may also raise StopIteration()
mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
const mp_obj_type_t *type = mp_obj_get_type(o_in);
mp_fun_1_t iternext = mp_type_get_iternext_slot(type);
if (iternext != NULL) {
MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL;
return iternext(o_in);
} else {
// check for __next__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __next__ exists, call it and return its result
return mp_call_method_n_kw(0, 0, dest);
} else {
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_TypeError(MP_ERROR_TEXT("object not an iterator"));
#else
mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not an iterator"),
mp_obj_get_type_qstr(o_in));
#endif
}
}
}
// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
// may raise other exceptions
mp_obj_t mp_iternext(mp_obj_t o_in) {
MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext
const mp_obj_type_t *type = mp_obj_get_type(o_in);
mp_fun_1_t iternext = mp_type_get_iternext_slot(type);
if (iternext != NULL) {
MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL;
return iternext(o_in);
} else {
// check for __next__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __next__ exists, call it and return its result
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
nlr_pop();
return ret;
} else {
if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
return mp_make_stop_iteration(mp_obj_exception_get_value(MP_OBJ_FROM_PTR(nlr.ret_val)));
} else {
nlr_jump(nlr.ret_val);
}
}
} else {
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
mp_raise_TypeError(MP_ERROR_TEXT("object not an iterator"));
#else
mp_raise_TypeError_varg(MP_ERROR_TEXT("'%q' object is not an iterator"),
mp_obj_get_type_qstr(o_in));
#endif
}
}
}
mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
const mp_obj_type_t *type = mp_obj_get_type(self_in);
if (type == &mp_type_gen_instance) {
return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
}
mp_fun_1_t iternext = mp_type_get_iternext_slot(type);
if (iternext != NULL && send_value == mp_const_none) {
MP_STATE_THREAD(stop_iteration_arg) = MP_OBJ_NULL;
mp_obj_t ret = iternext(self_in);
*ret_val = ret;
if (ret != MP_OBJ_STOP_ITERATION) {
return MP_VM_RETURN_YIELD;
} else {
// The generator is finished.
// This is an optimised "raise StopIteration(*ret_val)".
*ret_val = MP_STATE_THREAD(stop_iteration_arg);
if (*ret_val == MP_OBJ_NULL) {
*ret_val = mp_const_none;
}
return MP_VM_RETURN_NORMAL;
}
}
mp_obj_t dest[3]; // Reserve slot for send() arg
// Python instance iterator protocol
if (send_value == mp_const_none) {
mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
*ret_val = mp_call_method_n_kw(0, 0, dest);
return MP_VM_RETURN_YIELD;
}
}
// Either python instance generator protocol, or native object
// generator protocol.
if (send_value != MP_OBJ_NULL) {
mp_load_method(self_in, MP_QSTR_send, dest);
dest[2] = send_value;
*ret_val = mp_call_method_n_kw(1, 0, dest);
return MP_VM_RETURN_YIELD;
}
assert(throw_value != MP_OBJ_NULL);
{
if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(mp_obj_get_type(throw_value)), MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) {
mp_load_method_maybe(self_in, MP_QSTR_close, dest);
if (dest[0] != MP_OBJ_NULL) {
// TODO: Exceptions raised in close() are not propagated,
// printed to sys.stderr
*ret_val = mp_call_method_n_kw(0, 0, dest);
// We assume one can't "yield" from close()
return MP_VM_RETURN_NORMAL;
}
} else {
mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
if (dest[0] != MP_OBJ_NULL) {
dest[2] = throw_value;
*ret_val = mp_call_method_n_kw(1, 0, dest);
// If .throw() method returned, we assume it's value to yield
// - any exception would be thrown with nlr_raise().
return MP_VM_RETURN_YIELD;
}
}
// If there's nowhere to throw exception into, then we assume that object
// is just incapable to handle it, so any exception thrown into it
// will be propagated up. This behavior is approved by test_pep380.py
// test_delegation_of_close_to_non_generator(),
// test_delegating_throw_to_non_generator()
if (mp_obj_exception_match(throw_value, MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
// PEP479: if StopIteration is raised inside a generator it is replaced with RuntimeError
*ret_val = mp_obj_new_exception_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("generator raised StopIteration"));
} else {
*ret_val = mp_make_raise_obj(throw_value);
}
return MP_VM_RETURN_EXCEPTION;
}
}
mp_obj_t mp_make_raise_obj(mp_obj_t o) {
DEBUG_printf("raise %p\n", o);
if (mp_obj_is_exception_type(o)) {
// o is an exception type (it is derived from BaseException (or is BaseException))
// create and return a new exception instance by calling o
// TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
// could have const instances in ROM which we return here instead
o = mp_call_function_n_kw(o, 0, 0, NULL);
}
if (mp_obj_is_exception_instance(o)) {
// o is an instance of an exception, so use it as the exception
return o;
} else {
// o cannot be used as an exception, so return a type error (which will be raised by the caller)
return mp_obj_new_exception_msg(&mp_type_TypeError, MP_ERROR_TEXT("exceptions must derive from BaseException"));
}
}
mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level));
// build args array
mp_obj_t args[5];
args[0] = MP_OBJ_NEW_QSTR(name);
args[1] = mp_const_none; // TODO should be globals
args[2] = mp_const_none; // TODO should be locals
args[3] = fromlist;
args[4] = level;
#if MICROPY_CAN_OVERRIDE_BUILTINS
// Lookup __import__ and call that if it exists
mp_obj_dict_t *bo_dict = MP_STATE_VM(mp_module_builtins_override_dict);
if (bo_dict != NULL) {
mp_map_elem_t *import = mp_map_lookup(&bo_dict->map, MP_OBJ_NEW_QSTR(MP_QSTR___import__), MP_MAP_LOOKUP);
if (import != NULL) {
return mp_call_function_n_kw(import->value, 5, 0, args);
}
}
#endif
return mp_builtin___import__(5, args);
}
mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
DEBUG_printf("import from %p %s\n", module, qstr_str(name));
mp_obj_t dest[2];
mp_load_method_maybe(module, name, dest);
if (dest[1] != MP_OBJ_NULL) {
// Hopefully we can't import bound method from an object
mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("cannot import name %q"), name);
}
if (dest[0] != MP_OBJ_NULL) {
return dest[0];
}
#if MICROPY_ENABLE_EXTERNAL_IMPORT
// See if it's a package, then can try FS import
if (!mp_obj_is_package(module)) {
mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("cannot import name %q"), name);
}
mp_load_method_maybe(module, MP_QSTR___name__, dest);
size_t pkg_name_len;
const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);
const uint dot_name_len = pkg_name_len + 1 + qstr_len(name);
char *dot_name = mp_local_alloc(dot_name_len);
memcpy(dot_name, pkg_name, pkg_name_len);
dot_name[pkg_name_len] = '.';
memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len);
mp_local_free(dot_name);
// For fromlist, pass sentinel "non empty" value to force returning of leaf module
return mp_import_name(dot_name_q, mp_const_true, MP_OBJ_NEW_SMALL_INT(0));
#else
// Package import not supported with external imports disabled
mp_raise_msg_varg(&mp_type_ImportError, MP_ERROR_TEXT("cannot import name %q"), name);
#endif
}
void mp_import_all(mp_obj_t module) {
DEBUG_printf("import all %p\n", module);
// TODO: Support __all__
mp_map_t *map = &mp_obj_module_get_globals(module)->map;
for (size_t i = 0; i < map->alloc; i++) {
if (mp_map_slot_is_filled(map, i)) {
// Entry in module global scope may be generated programmatically
// (and thus be not a qstr for longer names). Avoid turning it in
// qstr if it has '_' and was used exactly to save memory.
const char *name = mp_obj_str_get_str(map->table[i].key);
if (*name != '_') {
qstr qname = mp_obj_str_get_qstr(map->table[i].key);
mp_store_name(qname, map->table[i].value);
}
}
}
}
#if MICROPY_ENABLE_COMPILER
mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) {
// save context
mp_obj_dict_t *volatile old_globals = mp_globals_get();
mp_obj_dict_t *volatile old_locals = mp_locals_get();
// set new context
mp_globals_set(globals);
mp_locals_set(locals);
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
qstr source_name = lex->source_name;
mp_parse_tree_t parse_tree = mp_parse(lex, parse_input_kind);
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, parse_input_kind == MP_PARSE_SINGLE_INPUT);
mp_obj_t ret;
if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) {
// for compile only, return value is the module function
ret = module_fun;
} else {
// execute module function and get return value
ret = mp_call_function_0(module_fun);
}
// finish nlr block, restore context and return value
nlr_pop();
mp_globals_set(old_globals);
mp_locals_set(old_locals);
return ret;
} else {
// exception; restore context and re-raise same exception
mp_globals_set(old_globals);
mp_locals_set(old_locals);
nlr_jump(nlr.ret_val);
}
}
#endif // MICROPY_ENABLE_COMPILER
NORETURN void m_malloc_fail(size_t num_bytes) {
DEBUG_printf("memory allocation failed, allocating %u bytes\n", (uint)num_bytes);
#if MICROPY_ENABLE_GC
if (gc_is_locked()) {
mp_raise_msg(&mp_type_MemoryError, MP_ERROR_TEXT("memory allocation failed, heap is locked"));
}
#endif
mp_raise_msg_varg(&mp_type_MemoryError,
MP_ERROR_TEXT("memory allocation failed, allocating %u bytes"), (uint)num_bytes);
}
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NONE
NORETURN void mp_raise_type(const mp_obj_type_t *exc_type) {
nlr_raise(mp_obj_new_exception(exc_type));
}
NORETURN void mp_raise_ValueError_no_msg(void) {
mp_raise_type(&mp_type_ValueError);
}
NORETURN void mp_raise_TypeError_no_msg(void) {
mp_raise_type(&mp_type_TypeError);
}
NORETURN void mp_raise_NotImplementedError_no_msg(void) {
mp_raise_type(&mp_type_NotImplementedError);
}
#else
NORETURN void mp_raise_msg(const mp_obj_type_t *exc_type, const compressed_string_t *msg) {
if (msg == NULL) {
nlr_raise(mp_obj_new_exception(exc_type));
} else {
nlr_raise(mp_obj_new_exception_msg(exc_type, msg));
}
}
NORETURN void mp_raise_msg_vlist(const mp_obj_type_t *exc_type, const compressed_string_t *fmt, va_list argptr) {
mp_obj_t exception = mp_obj_new_exception_msg_vlist(exc_type, fmt, argptr);
nlr_raise(exception);
}
NORETURN void mp_raise_msg_varg(const mp_obj_type_t *exc_type, const compressed_string_t *fmt, ...) {
va_list argptr;
va_start(argptr,fmt);
mp_raise_msg_vlist(exc_type, fmt, argptr);
va_end(argptr);
}
NORETURN void mp_raise_msg_str(const mp_obj_type_t *exc_type, const char *msg) {
if (msg == NULL) {
nlr_raise(mp_obj_new_exception(exc_type));
} else {
nlr_raise(mp_obj_new_exception_msg_str(exc_type, msg));
}
}
NORETURN void mp_raise_AttributeError(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_AttributeError, msg);
}
NORETURN void mp_raise_RuntimeError(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_RuntimeError, msg);
}
NORETURN void mp_raise_ImportError(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_ImportError, msg);
}
NORETURN void mp_raise_IndexError(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_IndexError, msg);
}
NORETURN void mp_raise_IndexError_varg(const compressed_string_t *fmt, ...) {
va_list argptr;
va_start(argptr,fmt);
mp_raise_msg_vlist(&mp_type_IndexError, fmt, argptr);
va_end(argptr);
}
NORETURN void mp_raise_ValueError(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_ValueError, msg);
}
NORETURN void mp_raise_ValueError_varg(const compressed_string_t *fmt, ...) {
va_list argptr;
va_start(argptr,fmt);
mp_raise_msg_vlist(&mp_type_ValueError, fmt, argptr);
va_end(argptr);
}
NORETURN void mp_raise_TypeError(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_TypeError, msg);
}
NORETURN void mp_raise_TypeError_varg(const compressed_string_t *fmt, ...) {
va_list argptr;
va_start(argptr,fmt);
mp_raise_msg_vlist(&mp_type_TypeError, fmt, argptr);
va_end(argptr);
}
NORETURN void mp_raise_OSError_msg(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_OSError, msg);
}
NORETURN void mp_raise_OSError_errno_str(int errno_, mp_obj_t str) {
mp_obj_t args[2] = {
MP_OBJ_NEW_SMALL_INT(errno_),
str,
};
nlr_raise(mp_obj_new_exception_args(&mp_type_OSError, 2, args));
}
NORETURN void mp_raise_OSError_msg_varg(const compressed_string_t *fmt, ...) {
va_list argptr;
va_start(argptr,fmt);
mp_raise_msg_vlist(&mp_type_OSError, fmt, argptr);
va_end(argptr);
}
NORETURN void mp_raise_ConnectionError(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_ConnectionError, msg);
}
NORETURN void mp_raise_BrokenPipeError(void) {
mp_raise_type_arg(&mp_type_BrokenPipeError, MP_OBJ_NEW_SMALL_INT(MP_EPIPE));
}
NORETURN void mp_raise_NotImplementedError(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_NotImplementedError, msg);
}
NORETURN void mp_raise_NotImplementedError_varg(const compressed_string_t *fmt, ...) {
va_list argptr;
va_start(argptr,fmt);
mp_raise_msg_vlist(&mp_type_NotImplementedError, fmt, argptr);
va_end(argptr);
}
NORETURN void mp_raise_OverflowError_varg(const compressed_string_t *fmt, ...) {
va_list argptr;
va_start(argptr,fmt);
mp_raise_msg_vlist(&mp_type_OverflowError, fmt, argptr);
va_end(argptr);
}
NORETURN void mp_raise_MpyError(const compressed_string_t *msg) {
mp_raise_msg(&mp_type_MpyError, msg);
}
NORETURN void mp_raise_type_arg(const mp_obj_type_t *exc_type, mp_obj_t arg) {
nlr_raise(mp_obj_new_exception_arg1(exc_type, arg));
}
NORETURN void mp_raise_StopIteration(mp_obj_t arg) {
if (arg == MP_OBJ_NULL) {
mp_raise_type(&mp_type_StopIteration);
} else {
mp_raise_type_arg(&mp_type_StopIteration, arg);
}
}
NORETURN void mp_raise_OSError(int errno_) {
mp_raise_type_arg(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(errno_));
}
#endif
#if MICROPY_STACK_CHECK || MICROPY_ENABLE_PYSTACK
NORETURN void mp_raise_recursion_depth(void) {
mp_raise_RuntimeError(MP_ERROR_TEXT("maximum recursion depth exceeded"));
}
#endif