379 lines
16 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/framebufferio/FramebufferDisplay.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/time/__init__.h"
#include "shared-module/displayio/__init__.h"
#include "shared-module/displayio/display_core.h"
#include "supervisor/shared/display.h"
#include "supervisor/shared/tick.h"
#include "supervisor/usb.h"
#include <stdint.h>
#include <string.h>
#define fb_getter_default(method, default_value) \
(self->framebuffer_protocol->method \
? self->framebuffer_protocol->method(self->framebuffer) \
: (default_value))
void common_hal_framebufferio_framebufferdisplay_construct(framebufferio_framebufferdisplay_obj_t *self,
mp_obj_t framebuffer,
uint16_t rotation,
bool auto_refresh) {
// Turn off auto-refresh as we init.
self->auto_refresh = false;
self->framebuffer = framebuffer;
self->framebuffer_protocol = mp_proto_get_or_throw(MP_QSTR_protocol_framebuffer, framebuffer);
uint16_t ram_width = 0x100;
uint16_t ram_height = 0x100;
uint16_t depth = fb_getter_default(get_color_depth, 16);
displayio_display_core_construct(
&self->core,
NULL,
self->framebuffer_protocol->get_width(self->framebuffer),
self->framebuffer_protocol->get_height(self->framebuffer),
ram_width,
ram_height,
0,
0,
0, // rotation
depth,
fb_getter_default(get_grayscale, (depth < 8)),
fb_getter_default(get_pixels_in_byte_share_row, false),
fb_getter_default(get_bytes_per_cell, 2),
fb_getter_default(get_reverse_pixels_in_byte, false),
fb_getter_default(get_reverse_pixels_in_word, false)
);
self->first_pixel_offset = fb_getter_default(get_first_pixel_offset, 0);
self->row_stride = fb_getter_default(get_row_stride, 0);
if (self->row_stride == 0) {
self->row_stride = self->core.width * self->core.colorspace.depth / 8;
}
self->framebuffer_protocol->get_bufinfo(self->framebuffer, &self->bufinfo);
size_t framebuffer_size = self->first_pixel_offset + self->row_stride * self->core.height;
mp_arg_validate_length_min(self->bufinfo.len, framebuffer_size, MP_QSTR_framebuffer);
self->first_manual_refresh = !auto_refresh;
self->native_frames_per_second = fb_getter_default(get_native_frames_per_second, 60);
self->native_ms_per_frame = 1000 / self->native_frames_per_second;
if (rotation != 0) {
common_hal_framebufferio_framebufferdisplay_set_rotation(self, rotation);
}
// Set the group after initialization otherwise we may send pixels while we delay in
// initialization.
common_hal_framebufferio_framebufferdisplay_show(self, &circuitpython_splash);
common_hal_framebufferio_framebufferdisplay_set_auto_refresh(self, auto_refresh);
}
bool common_hal_framebufferio_framebufferdisplay_show(framebufferio_framebufferdisplay_obj_t *self, displayio_group_t *root_group) {
if (root_group == NULL) {
root_group = &circuitpython_splash;
}
return displayio_display_core_set_root_group(&self->core, root_group);
}
uint16_t common_hal_framebufferio_framebufferdisplay_get_width(framebufferio_framebufferdisplay_obj_t *self) {
return displayio_display_core_get_width(&self->core);
}
uint16_t common_hal_framebufferio_framebufferdisplay_get_height(framebufferio_framebufferdisplay_obj_t *self) {
return displayio_display_core_get_height(&self->core);
}
mp_float_t common_hal_framebufferio_framebufferdisplay_get_brightness(framebufferio_framebufferdisplay_obj_t *self) {
if (self->framebuffer_protocol->get_brightness) {
return self->framebuffer_protocol->get_brightness(self->framebuffer);
}
return -1;
}
bool common_hal_framebufferio_framebufferdisplay_set_brightness(framebufferio_framebufferdisplay_obj_t *self, mp_float_t brightness) {
bool ok = false;
if (self->framebuffer_protocol->set_brightness) {
self->framebuffer_protocol->set_brightness(self->framebuffer, brightness);
ok = true;
}
return ok;
}
mp_obj_t common_hal_framebufferio_framebufferdisplay_get_framebuffer(framebufferio_framebufferdisplay_obj_t *self) {
return self->framebuffer;
}
STATIC const displayio_area_t *_get_refresh_areas(framebufferio_framebufferdisplay_obj_t *self) {
if (self->core.full_refresh) {
self->core.area.next = NULL;
return &self->core.area;
} else if (self->core.current_group != NULL) {
return displayio_group_get_refresh_areas(self->core.current_group, NULL);
}
return NULL;
}
#define MARK_ROW_DIRTY(r) (dirty_row_bitmask[r / 8] |= (1 << (r & 7)))
STATIC bool _refresh_area(framebufferio_framebufferdisplay_obj_t *self, const displayio_area_t *area, uint8_t *dirty_row_bitmask) {
uint16_t buffer_size = CIRCUITPY_DISPLAY_AREA_BUFFER_SIZE / sizeof(uint32_t); // In uint32_ts
displayio_area_t clipped;
// Clip the area to the display by overlapping the areas. If there is no overlap then we're done.
if (!displayio_display_core_clip_area(&self->core, area, &clipped)) {
return true;
}
uint16_t subrectangles = 1;
// If pixels are packed by row then rows are on byte boundaries
if (self->core.colorspace.depth < 8 && self->core.colorspace.pixels_in_byte_share_row) {
int div = 8 / self->core.colorspace.depth;
clipped.x1 = (clipped.x1 / div) * div;
clipped.x2 = ((clipped.x2 + div - 1) / div) * div;
}
uint16_t rows_per_buffer = displayio_area_height(&clipped);
uint8_t pixels_per_word = (sizeof(uint32_t) * 8) / self->core.colorspace.depth;
uint16_t pixels_per_buffer = displayio_area_size(&clipped);
if (displayio_area_size(&clipped) > buffer_size * pixels_per_word) {
rows_per_buffer = buffer_size * pixels_per_word / displayio_area_width(&clipped);
if (rows_per_buffer == 0) {
rows_per_buffer = 1;
}
// If pixels are packed by column then ensure rows_per_buffer is on a byte boundary.
if (self->core.colorspace.depth < 8 && !self->core.colorspace.pixels_in_byte_share_row) {
uint8_t pixels_per_byte = 8 / self->core.colorspace.depth;
if (rows_per_buffer % pixels_per_byte != 0) {
rows_per_buffer -= rows_per_buffer % pixels_per_byte;
}
}
subrectangles = displayio_area_height(&clipped) / rows_per_buffer;
if (displayio_area_height(&clipped) % rows_per_buffer != 0) {
subrectangles++;
}
pixels_per_buffer = rows_per_buffer * displayio_area_width(&clipped);
buffer_size = pixels_per_buffer / pixels_per_word;
if (pixels_per_buffer % pixels_per_word) {
buffer_size += 1;
}
}
// Allocated and shared as a uint32_t array so the compiler knows the
// alignment everywhere.
uint32_t buffer[buffer_size];
uint32_t mask_length = (pixels_per_buffer / 32) + 1;
uint32_t mask[mask_length];
uint16_t remaining_rows = displayio_area_height(&clipped);
for (uint16_t j = 0; j < subrectangles; j++) {
displayio_area_t subrectangle = {
.x1 = clipped.x1,
.y1 = clipped.y1 + rows_per_buffer * j,
.x2 = clipped.x2,
.y2 = clipped.y1 + rows_per_buffer * (j + 1)
};
if (remaining_rows < rows_per_buffer) {
subrectangle.y2 = subrectangle.y1 + remaining_rows;
}
remaining_rows -= rows_per_buffer;
memset(mask, 0, mask_length * sizeof(mask[0]));
memset(buffer, 0, buffer_size * sizeof(buffer[0]));
displayio_display_core_fill_area(&self->core, &subrectangle, mask, buffer);
uint8_t *buf = (uint8_t *)self->bufinfo.buf, *endbuf = buf + self->bufinfo.len;
(void)endbuf; // Hint to compiler that endbuf is "used" even if NDEBUG
buf += self->first_pixel_offset;
size_t rowstride = self->row_stride;
uint8_t *dest = buf + subrectangle.y1 * rowstride + subrectangle.x1 * self->core.colorspace.depth / 8;
uint8_t *src = (uint8_t *)buffer;
size_t rowsize = (subrectangle.x2 - subrectangle.x1) * self->core.colorspace.depth / 8;
for (uint16_t i = subrectangle.y1; i < subrectangle.y2; i++) {
assert(dest >= buf && dest < endbuf && dest + rowsize <= endbuf);
MARK_ROW_DIRTY(i);
memcpy(dest, src, rowsize);
dest += rowstride;
src += rowsize;
}
// TODO(tannewt): Make refresh displays faster so we don't starve other
// background tasks.
#if CIRCUITPY_USB
usb_background();
#endif
}
return true;
}
STATIC void _refresh_display(framebufferio_framebufferdisplay_obj_t *self) {
self->framebuffer_protocol->get_bufinfo(self->framebuffer, &self->bufinfo);
if (!self->bufinfo.buf) {
return;
}
displayio_display_core_start_refresh(&self->core);
const displayio_area_t *current_area = _get_refresh_areas(self);
if (current_area) {
uint8_t dirty_row_bitmask[(self->core.height + 7) / 8];
memset(dirty_row_bitmask, 0, sizeof(dirty_row_bitmask));
self->framebuffer_protocol->get_bufinfo(self->framebuffer, &self->bufinfo);
while (current_area != NULL) {
_refresh_area(self, current_area, dirty_row_bitmask);
current_area = current_area->next;
}
self->framebuffer_protocol->swapbuffers(self->framebuffer, dirty_row_bitmask);
}
displayio_display_core_finish_refresh(&self->core);
}
void common_hal_framebufferio_framebufferdisplay_set_rotation(framebufferio_framebufferdisplay_obj_t *self, int rotation) {
bool transposed = (self->core.rotation == 90 || self->core.rotation == 270);
bool will_transposed = (rotation == 90 || rotation == 270);
if (transposed != will_transposed) {
int tmp = self->core.width;
self->core.width = self->core.height;
self->core.height = tmp;
}
displayio_display_core_set_rotation(&self->core, rotation);
if (self == &displays[0].framebuffer_display) {
supervisor_stop_terminal();
supervisor_start_terminal(self->core.width, self->core.height);
}
if (self->core.current_group != NULL) {
displayio_group_update_transform(self->core.current_group, &self->core.transform);
}
}
uint16_t common_hal_framebufferio_framebufferdisplay_get_rotation(framebufferio_framebufferdisplay_obj_t *self) {
return self->core.rotation;
}
bool common_hal_framebufferio_framebufferdisplay_refresh(framebufferio_framebufferdisplay_obj_t *self, uint32_t target_ms_per_frame, uint32_t maximum_ms_per_real_frame) {
if (!self->auto_refresh && !self->first_manual_refresh) {
uint64_t current_time = supervisor_ticks_ms64();
uint32_t current_ms_since_real_refresh = current_time - self->core.last_refresh;
// Test to see if the real frame time is below our minimum.
if (current_ms_since_real_refresh > maximum_ms_per_real_frame) {
mp_raise_RuntimeError(translate("Below minimum frame rate"));
}
uint32_t current_ms_since_last_call = current_time - self->last_refresh_call;
self->last_refresh_call = current_time;
// Skip the actual refresh to help catch up.
if (current_ms_since_last_call > target_ms_per_frame) {
return false;
}
uint32_t remaining_time = target_ms_per_frame - (current_ms_since_real_refresh % target_ms_per_frame);
// We're ahead of the game so wait until we align with the frame rate.
while (supervisor_ticks_ms64() - self->last_refresh_call < remaining_time) {
RUN_BACKGROUND_TASKS;
}
}
self->first_manual_refresh = false;
_refresh_display(self);
return true;
}
bool common_hal_framebufferio_framebufferdisplay_get_auto_refresh(framebufferio_framebufferdisplay_obj_t *self) {
return self->auto_refresh;
}
void common_hal_framebufferio_framebufferdisplay_set_auto_refresh(framebufferio_framebufferdisplay_obj_t *self,
bool auto_refresh) {
self->first_manual_refresh = !auto_refresh;
if (auto_refresh != self->auto_refresh) {
if (auto_refresh) {
supervisor_enable_tick();
} else {
supervisor_disable_tick();
}
}
self->auto_refresh = auto_refresh;
}
STATIC void _update_backlight(framebufferio_framebufferdisplay_obj_t *self) {
// TODO(tannewt): Fade the backlight based on it's existing value and a target value. The target
// should account for ambient light when possible.
}
void framebufferio_framebufferdisplay_background(framebufferio_framebufferdisplay_obj_t *self) {
_update_backlight(self);
if (self->auto_refresh && (supervisor_ticks_ms64() - self->core.last_refresh) > self->native_ms_per_frame) {
_refresh_display(self);
}
}
void release_framebufferdisplay(framebufferio_framebufferdisplay_obj_t *self) {
common_hal_framebufferio_framebufferdisplay_set_auto_refresh(self, false);
release_display_core(&self->core);
self->framebuffer_protocol->deinit(self->framebuffer);
self->base.type = &mp_type_NoneType;
}
void framebufferio_framebufferdisplay_collect_ptrs(framebufferio_framebufferdisplay_obj_t *self) {
gc_collect_ptr(self->framebuffer);
displayio_display_core_collect_ptrs(&self->core);
}
void framebufferio_framebufferdisplay_reset(framebufferio_framebufferdisplay_obj_t *self) {
const mp_obj_type_t *fb_type = mp_obj_get_type(self->framebuffer);
if (fb_type != NULL && fb_type != &mp_type_NoneType) {
common_hal_framebufferio_framebufferdisplay_set_auto_refresh(self, true);
common_hal_framebufferio_framebufferdisplay_show(self, NULL);
self->core.full_refresh = true;
} else {
release_framebufferdisplay(self);
}
}
mp_obj_t common_hal_framebufferio_framebufferdisplay_get_root_group(framebufferio_framebufferdisplay_obj_t *self) {
if (self->core.current_group == NULL) {
return mp_const_none;
}
return self->core.current_group;
}
mp_obj_t common_hal_framebufferio_framebufferdisplay_set_root_group(framebufferio_framebufferdisplay_obj_t *self, displayio_group_t *root_group) {
bool ok = displayio_display_core_set_root_group(&self->core, root_group);
if (!ok) {
mp_raise_ValueError(translate("Group already used"));
}
return mp_const_none;
}