circuitpython/py/objtuple.c
Damien George 9b196cddab Remove mp_obj_type_t.methods entry and use .locals_dict instead.
Originally, .methods was used for methods in a ROM class, and
locals_dict for methods in a user-created class.  That distinction is
unnecessary, and we can use locals_dict for ROM classes now that we have
ROMable maps.

This removes an entry in the bloated mp_obj_type_t struct, saving a word
for each ROM object and each RAM object.  ROM objects that have a
methods table (now a locals_dict) need an extra word in total (removed
the methods pointer (1 word), no longer need the sentinel (2 words), but
now need an mp_obj_dict_t wrapper (4 words)).  But RAM objects save a
word because they never used the methods entry.

Overall the ROM usage is down by a few hundred bytes, and RAM usage is
down 1 word per user-defined type/class.

There is less code (no need to check 2 tables), and now consistent with
the way ROM modules have their tables initialised.

Efficiency is very close to equivaluent.
2014-03-26 21:47:19 +00:00

267 lines
8.1 KiB
C

#include <string.h>
#include <assert.h>
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "map.h"
#include "runtime0.h"
#include "runtime.h"
#include "objtuple.h"
STATIC mp_obj_t mp_obj_new_tuple_iterator(mp_obj_tuple_t *tuple, int cur);
/******************************************************************************/
/* tuple */
void tuple_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o_in, mp_print_kind_t kind) {
mp_obj_tuple_t *o = o_in;
print(env, "(");
for (int i = 0; i < o->len; i++) {
if (i > 0) {
print(env, ", ");
}
mp_obj_print_helper(print, env, o->items[i], PRINT_REPR);
}
if (o->len == 1) {
print(env, ",");
}
print(env, ")");
}
STATIC mp_obj_t tuple_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO check n_kw == 0
switch (n_args) {
case 0:
// return a empty tuple
return mp_const_empty_tuple;
case 1:
{
// 1 argument, an iterable from which we make a new tuple
if (MP_OBJ_IS_TYPE(args[0], &tuple_type)) {
return args[0];
}
// TODO optimise for cases where we know the length of the iterator
uint alloc = 4;
uint len = 0;
mp_obj_t *items = m_new(mp_obj_t, alloc);
mp_obj_t iterable = rt_getiter(args[0]);
mp_obj_t item;
while ((item = rt_iternext(iterable)) != MP_OBJ_NULL) {
if (len >= alloc) {
items = m_renew(mp_obj_t, items, alloc, alloc * 2);
alloc *= 2;
}
items[len++] = item;
}
mp_obj_t tuple = mp_obj_new_tuple(len, items);
m_free(items, alloc);
return tuple;
}
default:
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "tuple takes at most 1 argument, %d given", n_args));
}
}
// Don't pass RT_BINARY_OP_NOT_EQUAL here
STATIC bool tuple_cmp_helper(int op, mp_obj_t self_in, mp_obj_t another_in) {
assert(MP_OBJ_IS_TYPE(self_in, &tuple_type));
if (!MP_OBJ_IS_TYPE(another_in, &tuple_type)) {
return false;
}
mp_obj_tuple_t *self = self_in;
mp_obj_tuple_t *another = another_in;
return mp_seq_cmp_objs(op, self->items, self->len, another->items, another->len);
}
mp_obj_t tuple_unary_op(int op, mp_obj_t self_in) {
mp_obj_tuple_t *self = self_in;
switch (op) {
case RT_UNARY_OP_BOOL: return MP_BOOL(self->len != 0);
case RT_UNARY_OP_LEN: return MP_OBJ_NEW_SMALL_INT(self->len);
default: return MP_OBJ_NULL; // op not supported for None
}
}
mp_obj_t tuple_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
mp_obj_tuple_t *o = lhs;
switch (op) {
case RT_BINARY_OP_SUBSCR:
{
#if MICROPY_ENABLE_SLICE
if (MP_OBJ_IS_TYPE(rhs, &slice_type)) {
machine_uint_t start, stop;
if (!m_seq_get_fast_slice_indexes(o->len, rhs, &start, &stop)) {
assert(0);
}
mp_obj_tuple_t *res = mp_obj_new_tuple(stop - start, NULL);
m_seq_copy(res->items, o->items + start, res->len, mp_obj_t);
return res;
}
#endif
uint index = mp_get_index(o->base.type, o->len, rhs, false);
return o->items[index];
}
case RT_BINARY_OP_ADD:
{
if (!mp_obj_is_subclass_fast(mp_obj_get_type(rhs), (mp_obj_t)&tuple_type)) {
return NULL;
}
mp_obj_tuple_t *p = rhs;
mp_obj_tuple_t *s = mp_obj_new_tuple(o->len + p->len, NULL);
m_seq_cat(s->items, o->items, o->len, p->items, p->len, mp_obj_t);
return s;
}
case RT_BINARY_OP_MULTIPLY:
{
if (!MP_OBJ_IS_SMALL_INT(rhs)) {
return NULL;
}
int n = MP_OBJ_SMALL_INT_VALUE(rhs);
mp_obj_tuple_t *s = mp_obj_new_tuple(o->len * n, NULL);
mp_seq_multiply(o->items, sizeof(*o->items), o->len, n, s->items);
return s;
}
case RT_BINARY_OP_EQUAL:
case RT_BINARY_OP_LESS:
case RT_BINARY_OP_LESS_EQUAL:
case RT_BINARY_OP_MORE:
case RT_BINARY_OP_MORE_EQUAL:
return MP_BOOL(tuple_cmp_helper(op, lhs, rhs));
case RT_BINARY_OP_NOT_EQUAL:
return MP_BOOL(!tuple_cmp_helper(RT_BINARY_OP_EQUAL, lhs, rhs));
default:
// op not supported
return NULL;
}
}
STATIC mp_obj_t tuple_getiter(mp_obj_t o_in) {
return mp_obj_new_tuple_iterator(o_in, 0);
}
STATIC mp_obj_t tuple_count(mp_obj_t self_in, mp_obj_t value) {
assert(MP_OBJ_IS_TYPE(self_in, &tuple_type));
mp_obj_tuple_t *self = self_in;
return mp_seq_count_obj(self->items, self->len, value);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(tuple_count_obj, tuple_count);
STATIC mp_obj_t tuple_index(uint n_args, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(args[0], &tuple_type));
mp_obj_tuple_t *self = args[0];
return mp_seq_index_obj(self->items, self->len, n_args, args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(tuple_index_obj, 2, 4, tuple_index);
STATIC const mp_map_elem_t tuple_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_count), (mp_obj_t)&tuple_count_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_index), (mp_obj_t)&tuple_index_obj },
};
STATIC MP_DEFINE_CONST_DICT(tuple_locals_dict, tuple_locals_dict_table);
const mp_obj_type_t tuple_type = {
{ &mp_type_type },
.name = MP_QSTR_tuple,
.print = tuple_print,
.make_new = tuple_make_new,
.unary_op = tuple_unary_op,
.binary_op = tuple_binary_op,
.getiter = tuple_getiter,
.locals_dict = (mp_obj_t)&tuple_locals_dict,
};
// the zero-length tuple
STATIC const mp_obj_tuple_t empty_tuple_obj = {{&tuple_type}, 0};
const mp_obj_t mp_const_empty_tuple = (mp_obj_t)&empty_tuple_obj;
mp_obj_t mp_obj_new_tuple(uint n, const mp_obj_t *items) {
if (n == 0) {
return mp_const_empty_tuple;
}
mp_obj_tuple_t *o = m_new_obj_var(mp_obj_tuple_t, mp_obj_t, n);
o->base.type = &tuple_type;
o->len = n;
if (items) {
for (int i = 0; i < n; i++) {
o->items[i] = items[i];
}
}
return o;
}
void mp_obj_tuple_get(mp_obj_t self_in, uint *len, mp_obj_t **items) {
assert(MP_OBJ_IS_TYPE(self_in, &tuple_type));
mp_obj_tuple_t *self = self_in;
if (len) {
*len = self->len;
}
if (items) {
*items = &self->items[0];
}
}
void mp_obj_tuple_del(mp_obj_t self_in) {
assert(MP_OBJ_IS_TYPE(self_in, &tuple_type));
mp_obj_tuple_t *self = self_in;
m_del_var(mp_obj_tuple_t, mp_obj_t, self->len, self);
}
machine_int_t mp_obj_tuple_hash(mp_obj_t self_in) {
assert(MP_OBJ_IS_TYPE(self_in, &tuple_type));
mp_obj_tuple_t *self = self_in;
// start hash with pointer to empty tuple, to make it fairly unique
machine_int_t hash = (machine_int_t)mp_const_empty_tuple;
for (uint i = 0; i < self->len; i++) {
hash += mp_obj_hash(self->items[i]);
}
return hash;
}
/******************************************************************************/
/* tuple iterator */
typedef struct _mp_obj_tuple_it_t {
mp_obj_base_t base;
mp_obj_tuple_t *tuple;
machine_uint_t cur;
} mp_obj_tuple_it_t;
STATIC mp_obj_t tuple_it_iternext(mp_obj_t self_in) {
mp_obj_tuple_it_t *self = self_in;
if (self->cur < self->tuple->len) {
mp_obj_t o_out = self->tuple->items[self->cur];
self->cur += 1;
return o_out;
} else {
return MP_OBJ_NULL;
}
}
STATIC const mp_obj_type_t tuple_it_type = {
{ &mp_type_type },
.name = MP_QSTR_iterator,
.iternext = tuple_it_iternext,
};
STATIC mp_obj_t mp_obj_new_tuple_iterator(mp_obj_tuple_t *tuple, int cur) {
mp_obj_tuple_it_t *o = m_new_obj(mp_obj_tuple_it_t);
o->base.type = &tuple_it_type;
o->tuple = tuple;
o->cur = cur;
return o;
}