circuitpython/shared-module/audioio/RawSample.c
Scott Shawcroft 28642ab10d Add audio output support!
This evolves the API from 2.x (and breaks it). Playback devices are now
separate from the samples themselves. This allows for greater playback
flexibility. Two sample sources are audioio.RawSample and audioio.WaveFile.
They can both be mono or stereo. They can be output to audioio.AudioOut or
audiobusio.I2SOut.

Internally, the dma tracking has changed from a TC counting block transfers
to an interrupt generated by the block event sent to the EVSYS. This reduces
the overhead of each DMA transfer so multiple can occure without using up TCs.

Fixes #652. Fixes #522. Huge progress on #263
2018-04-12 16:35:13 -07:00

95 lines
3.7 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/audioio/RawSample.h"
#include <stdint.h>
#include "shared-module/audioio/RawSample.h"
void common_hal_audioio_rawsample_construct(audioio_rawsample_obj_t* self,
uint8_t* buffer,
uint32_t len,
uint8_t bytes_per_sample,
bool samples_signed,
uint8_t channel_count,
uint32_t sample_rate) {
self->buffer = buffer;
self->bits_per_sample = bytes_per_sample * 8;
self->samples_signed = samples_signed;
self->len = len;
self->channel_count = channel_count;
self->sample_rate = sample_rate;
self->buffer_read = false;
}
void common_hal_audioio_rawsample_deinit(audioio_rawsample_obj_t* self) {
self->buffer = NULL;
}
bool common_hal_audioio_rawsample_deinited(audioio_rawsample_obj_t* self) {
return self->buffer == NULL;
}
uint32_t common_hal_audioio_rawsample_get_sample_rate(audioio_rawsample_obj_t* self) {
return self->sample_rate;
}
void common_hal_audioio_rawsample_set_sample_rate(audioio_rawsample_obj_t* self,
uint32_t sample_rate) {
self->sample_rate = sample_rate;
}
void audioio_rawsample_reset_buffer(audioio_rawsample_obj_t* self,
bool single_channel,
uint8_t channel) {
}
bool audioio_rawsample_get_buffer(audioio_rawsample_obj_t* self,
bool single_channel,
uint8_t channel,
uint8_t** buffer,
uint32_t* buffer_length) {
*buffer_length = self->len;
if (single_channel) {
*buffer = self->buffer + (channel % self->channel_count) * (self->bits_per_sample / 8);
} else {
*buffer = self->buffer;
}
return true;
}
void audioio_rawsample_get_buffer_structure(audioio_rawsample_obj_t* self, bool single_channel,
bool* single_buffer, bool* samples_signed,
uint32_t* max_buffer_length, uint8_t* spacing) {
*single_buffer = true;
*samples_signed = self->samples_signed;
*max_buffer_length = self->len;
if (single_channel) {
*spacing = self->channel_count;
} else {
*spacing = 1;
}
}