circuitpython/py/gc.c
2020-07-06 19:16:25 +01:00

1158 lines
40 KiB
C
Executable File

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "py/gc.h"
#include "py/runtime.h"
#include "supervisor/shared/safe_mode.h"
#if MICROPY_ENABLE_GC
#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif
// Uncomment this if you want to use a debugger to capture state at every allocation and free.
// #define LOG_HEAP_ACTIVITY 1
// make this 1 to dump the heap each time it changes
#define EXTENSIVE_HEAP_PROFILING (0)
// make this 1 to zero out swept memory to more eagerly
// detect untraced object still in use
#define CLEAR_ON_SWEEP (0)
// ATB = allocation table byte
// 0b00 = FREE -- free block
// 0b01 = HEAD -- head of a chain of blocks
// 0b10 = TAIL -- in the tail of a chain of blocks
// 0b11 = MARK -- marked head block
#define AT_FREE (0)
#define AT_HEAD (1)
#define AT_TAIL (2)
#define AT_MARK (3)
#define BLOCKS_PER_ATB (4)
#define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1)))
#define ATB_GET_KIND(block) ((MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3)
#define ATB_ANY_TO_FREE(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0)
#define ATB_FREE_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0)
#define ATB_FREE_TO_TAIL(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0)
#define ATB_HEAD_TO_MARK(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0)
#define ATB_MARK_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0)
#define BLOCK_FROM_PTR(ptr) (((byte*)(ptr) - MP_STATE_MEM(gc_pool_start)) / BYTES_PER_BLOCK)
#define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (uintptr_t)MP_STATE_MEM(gc_pool_start)))
#define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB)
#if MICROPY_ENABLE_FINALISER
// FTB = finaliser table byte
// if set, then the corresponding block may have a finaliser
#define BLOCKS_PER_FTB (8)
#define FTB_GET(block) ((MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1)
#define FTB_SET(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0)
#define FTB_CLEAR(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0)
#endif
#if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL
#define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1)
#define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex))
#else
#define GC_ENTER()
#define GC_EXIT()
#endif
#ifdef LOG_HEAP_ACTIVITY
volatile uint32_t change_me;
#pragma GCC push_options
#pragma GCC optimize ("O0")
void __attribute__ ((noinline)) gc_log_change(uint32_t start_block, uint32_t length) {
change_me += start_block;
change_me += length; // Break on this line.
}
#pragma GCC pop_options
#endif
// TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool
void gc_init(void *start, void *end) {
// align end pointer on block boundary
end = (void*)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1)));
DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte*)end - (byte*)start);
// calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes):
// T = A + F + P
// F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB
// P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK
// => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK)
size_t total_byte_len = (byte*)end - (byte*)start;
#if MICROPY_ENABLE_FINALISER
MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len * BITS_PER_BYTE / (BITS_PER_BYTE + BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK);
#else
MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len / (1 + BITS_PER_BYTE / 2 * BYTES_PER_BLOCK);
#endif
MP_STATE_MEM(gc_alloc_table_start) = (byte*)start;
#if MICROPY_ENABLE_FINALISER
size_t gc_finaliser_table_byte_len = (MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB;
MP_STATE_MEM(gc_finaliser_table_start) = MP_STATE_MEM(gc_alloc_table_start) + MP_STATE_MEM(gc_alloc_table_byte_len);
#endif
size_t gc_pool_block_len = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
MP_STATE_MEM(gc_pool_start) = (byte*)end - gc_pool_block_len * BYTES_PER_BLOCK;
MP_STATE_MEM(gc_pool_end) = end;
#if MICROPY_ENABLE_FINALISER
assert(MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len);
#endif
// clear ATBs
memset(MP_STATE_MEM(gc_alloc_table_start), 0, MP_STATE_MEM(gc_alloc_table_byte_len));
#if MICROPY_ENABLE_FINALISER
// clear FTBs
memset(MP_STATE_MEM(gc_finaliser_table_start), 0, gc_finaliser_table_byte_len);
#endif
// Set first free ATB index to the start of the heap.
for (size_t i = 0; i < MICROPY_ATB_INDICES; i++) {
MP_STATE_MEM(gc_first_free_atb_index)[i] = 0;
}
// Set last free ATB index to the end of the heap.
MP_STATE_MEM(gc_last_free_atb_index) = MP_STATE_MEM(gc_alloc_table_byte_len) - 1;
// Set the lowest long lived ptr to the end of the heap to start. This will be lowered as long
// lived objects are allocated.
MP_STATE_MEM(gc_lowest_long_lived_ptr) = (void*) PTR_FROM_BLOCK(MP_STATE_MEM(gc_alloc_table_byte_len * BLOCKS_PER_ATB));
// unlock the GC
MP_STATE_MEM(gc_lock_depth) = 0;
// allow auto collection
MP_STATE_MEM(gc_auto_collect_enabled) = true;
#if MICROPY_GC_ALLOC_THRESHOLD
// by default, maxuint for gc threshold, effectively turning gc-by-threshold off
MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1;
MP_STATE_MEM(gc_alloc_amount) = 0;
#endif
#if MICROPY_PY_THREAD
mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex));
#endif
MP_STATE_MEM(permanent_pointers) = NULL;
DEBUG_printf("GC layout:\n");
DEBUG_printf(" alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_alloc_table_start), MP_STATE_MEM(gc_alloc_table_byte_len), MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
#if MICROPY_ENABLE_FINALISER
DEBUG_printf(" finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_finaliser_table_start), gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB);
#endif
DEBUG_printf(" pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_pool_start), gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len);
}
void gc_deinit(void) {
// Run any finalizers before we stop using the heap.
gc_sweep_all();
MP_STATE_MEM(gc_pool_start) = 0;
}
void gc_lock(void) {
GC_ENTER();
MP_STATE_MEM(gc_lock_depth)++;
GC_EXIT();
}
void gc_unlock(void) {
GC_ENTER();
MP_STATE_MEM(gc_lock_depth)--;
GC_EXIT();
}
bool gc_is_locked(void) {
return MP_STATE_MEM(gc_lock_depth) != 0;
}
#ifndef TRACE_MARK
#if DEBUG_PRINT
#define TRACE_MARK(block, ptr) DEBUG_printf("gc_mark(%p)\n", ptr)
#else
#define TRACE_MARK(block, ptr)
#endif
#endif
// Take the given block as the topmost block on the stack. Check all it's
// children: mark the unmarked child blocks and put those newly marked
// blocks on the stack. When all children have been checked, pop off the
// topmost block on the stack and repeat with that one.
STATIC void gc_mark_subtree(size_t block) {
// Start with the block passed in the argument.
size_t sp = 0;
for (;;) {
// work out number of consecutive blocks in the chain starting with this one
size_t n_blocks = 0;
do {
n_blocks += 1;
} while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
// check this block's children
void **ptrs = (void**)PTR_FROM_BLOCK(block);
for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void*); i > 0; i--, ptrs++) {
void *ptr = *ptrs;
if (VERIFY_PTR(ptr)) {
// Mark and push this pointer
size_t childblock = BLOCK_FROM_PTR(ptr);
if (ATB_GET_KIND(childblock) == AT_HEAD) {
// an unmarked head, mark it, and push it on gc stack
TRACE_MARK(childblock, ptr);
ATB_HEAD_TO_MARK(childblock);
if (sp < MICROPY_ALLOC_GC_STACK_SIZE) {
MP_STATE_MEM(gc_stack)[sp++] = childblock;
} else {
MP_STATE_MEM(gc_stack_overflow) = 1;
}
}
}
}
// Are there any blocks on the stack?
if (sp == 0) {
break; // No, stack is empty, we're done.
}
// pop the next block off the stack
block = MP_STATE_MEM(gc_stack)[--sp];
}
}
STATIC void gc_deal_with_stack_overflow(void) {
while (MP_STATE_MEM(gc_stack_overflow)) {
MP_STATE_MEM(gc_stack_overflow) = 0;
// scan entire memory looking for blocks which have been marked but not their children
for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
// trace (again) if mark bit set
if (ATB_GET_KIND(block) == AT_MARK) {
gc_mark_subtree(block);
}
}
}
}
STATIC void gc_sweep(void) {
#if MICROPY_PY_GC_COLLECT_RETVAL
MP_STATE_MEM(gc_collected) = 0;
#endif
// free unmarked heads and their tails
int free_tail = 0;
for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
switch (ATB_GET_KIND(block)) {
case AT_HEAD:
#if MICROPY_ENABLE_FINALISER
if (FTB_GET(block)) {
mp_obj_base_t *obj = (mp_obj_base_t*)PTR_FROM_BLOCK(block);
if (obj->type != NULL) {
// if the object has a type then see if it has a __del__ method
mp_obj_t dest[2];
mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest);
if (dest[0] != MP_OBJ_NULL) {
// load_method returned a method, execute it in a protected environment
#if MICROPY_ENABLE_SCHEDULER
mp_sched_lock();
#endif
mp_call_function_1_protected(dest[0], dest[1]);
#if MICROPY_ENABLE_SCHEDULER
mp_sched_unlock();
#endif
}
}
// clear finaliser flag
FTB_CLEAR(block);
}
#endif
free_tail = 1;
ATB_ANY_TO_FREE(block);
#if CLEAR_ON_SWEEP
memset((void*)PTR_FROM_BLOCK(block), 0, BYTES_PER_BLOCK);
#endif
DEBUG_printf("gc_sweep(%x)\n", PTR_FROM_BLOCK(block));
#ifdef LOG_HEAP_ACTIVITY
gc_log_change(block, 0);
#endif
#if MICROPY_PY_GC_COLLECT_RETVAL
MP_STATE_MEM(gc_collected)++;
#endif
break;
case AT_TAIL:
if (free_tail) {
ATB_ANY_TO_FREE(block);
#if CLEAR_ON_SWEEP
memset((void*)PTR_FROM_BLOCK(block), 0, BYTES_PER_BLOCK);
#endif
}
break;
case AT_MARK:
ATB_MARK_TO_HEAD(block);
free_tail = 0;
break;
}
}
}
// Mark can handle NULL pointers because it verifies the pointer is within the heap bounds.
STATIC void gc_mark(void* ptr) {
if (VERIFY_PTR(ptr)) {
size_t block = BLOCK_FROM_PTR(ptr);
if (ATB_GET_KIND(block) == AT_HEAD) {
// An unmarked head: mark it, and mark all its children
TRACE_MARK(block, ptr);
ATB_HEAD_TO_MARK(block);
gc_mark_subtree(block);
}
}
}
void gc_collect_start(void) {
GC_ENTER();
MP_STATE_MEM(gc_lock_depth)++;
#if MICROPY_GC_ALLOC_THRESHOLD
MP_STATE_MEM(gc_alloc_amount) = 0;
#endif
MP_STATE_MEM(gc_stack_overflow) = 0;
// Trace root pointers. This relies on the root pointers being organised
// correctly in the mp_state_ctx structure. We scan nlr_top, dict_locals,
// dict_globals, then the root pointer section of mp_state_vm.
void **ptrs = (void**)(void*)&mp_state_ctx;
size_t root_start = offsetof(mp_state_ctx_t, thread.dict_locals);
size_t root_end = offsetof(mp_state_ctx_t, vm.qstr_last_chunk);
gc_collect_root(ptrs + root_start / sizeof(void*), (root_end - root_start) / sizeof(void*));
gc_mark(MP_STATE_MEM(permanent_pointers));
#if MICROPY_ENABLE_PYSTACK
// Trace root pointers from the Python stack.
ptrs = (void**)(void*)MP_STATE_THREAD(pystack_start);
gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void*));
#endif
}
void gc_collect_ptr(void *ptr) {
gc_mark(ptr);
}
void gc_collect_root(void **ptrs, size_t len) {
for (size_t i = 0; i < len; i++) {
void *ptr = ptrs[i];
gc_mark(ptr);
}
}
void gc_collect_end(void) {
gc_deal_with_stack_overflow();
gc_sweep();
for (size_t i = 0; i < MICROPY_ATB_INDICES; i++) {
MP_STATE_MEM(gc_first_free_atb_index)[i] = 0;
}
MP_STATE_MEM(gc_last_free_atb_index) = MP_STATE_MEM(gc_alloc_table_byte_len) - 1;
MP_STATE_MEM(gc_lock_depth)--;
GC_EXIT();
}
void gc_sweep_all(void) {
GC_ENTER();
MP_STATE_MEM(gc_lock_depth)++;
MP_STATE_MEM(gc_stack_overflow) = 0;
gc_collect_end();
}
void gc_info(gc_info_t *info) {
GC_ENTER();
info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start);
info->used = 0;
info->free = 0;
info->max_free = 0;
info->num_1block = 0;
info->num_2block = 0;
info->max_block = 0;
bool finish = false;
for (size_t block = 0, len = 0, len_free = 0; !finish;) {
size_t kind = ATB_GET_KIND(block);
switch (kind) {
case AT_FREE:
info->free += 1;
len_free += 1;
len = 0;
break;
case AT_HEAD:
info->used += 1;
len = 1;
break;
case AT_TAIL:
info->used += 1;
len += 1;
break;
case AT_MARK:
// shouldn't happen
break;
}
block++;
finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
// Get next block type if possible
if (!finish) {
kind = ATB_GET_KIND(block);
}
if (finish || kind == AT_FREE || kind == AT_HEAD) {
if (len == 1) {
info->num_1block += 1;
} else if (len == 2) {
info->num_2block += 1;
}
if (len > info->max_block) {
info->max_block = len;
}
if (finish || kind == AT_HEAD) {
if (len_free > info->max_free) {
info->max_free = len_free;
}
len_free = 0;
}
}
}
info->used *= BYTES_PER_BLOCK;
info->free *= BYTES_PER_BLOCK;
GC_EXIT();
}
bool gc_alloc_possible(void) {
return MP_STATE_MEM(gc_pool_start) != 0;
}
// We place long lived objects at the end of the heap rather than the start. This reduces
// fragmentation by localizing the heap churn to one portion of memory (the start of the heap.)
void *gc_alloc(size_t n_bytes, bool has_finaliser, bool long_lived) {
size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK;
DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks);
// check for 0 allocation
if (n_blocks == 0) {
return NULL;
}
if (MP_STATE_MEM(gc_pool_start) == 0) {
reset_into_safe_mode(GC_ALLOC_OUTSIDE_VM);
}
GC_ENTER();
// check if GC is locked
if (MP_STATE_MEM(gc_lock_depth) > 0) {
GC_EXIT();
return NULL;
}
size_t found_block = 0xffffffff;
size_t end_block;
size_t start_block;
size_t n_free;
bool collected = !MP_STATE_MEM(gc_auto_collect_enabled);
#if MICROPY_GC_ALLOC_THRESHOLD
if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) {
GC_EXIT();
gc_collect();
collected = 1;
GC_ENTER();
}
#endif
bool keep_looking = true;
// When we start searching on the other side of the crossover block we make sure to
// perform a collect. That way we'll get the closest free block in our section.
size_t crossover_block = BLOCK_FROM_PTR(MP_STATE_MEM(gc_lowest_long_lived_ptr));
while (keep_looking) {
int8_t direction = 1;
size_t bucket = MIN(n_blocks, MICROPY_ATB_INDICES) - 1;
size_t first_free = MP_STATE_MEM(gc_first_free_atb_index)[bucket];
size_t start = first_free;
if (long_lived) {
direction = -1;
start = MP_STATE_MEM(gc_last_free_atb_index);
}
n_free = 0;
// look for a run of n_blocks available blocks
for (size_t i = start; keep_looking && first_free <= i && i <= MP_STATE_MEM(gc_last_free_atb_index); i += direction) {
byte a = MP_STATE_MEM(gc_alloc_table_start)[i];
// Four ATB states are packed into a single byte.
int j = 0;
if (direction == -1) {
j = 3;
}
for (; keep_looking && 0 <= j && j <= 3; j += direction) {
if ((a & (0x3 << (j * 2))) == 0) {
if (++n_free >= n_blocks) {
found_block = i * BLOCKS_PER_ATB + j;
keep_looking = false;
}
} else {
if (!collected) {
size_t block = i * BLOCKS_PER_ATB + j;
if ((direction == 1 && block >= crossover_block) ||
(direction == -1 && block < crossover_block)) {
keep_looking = false;
}
}
n_free = 0;
}
}
}
if (n_free >= n_blocks) {
break;
}
GC_EXIT();
// nothing found!
if (collected) {
return NULL;
}
DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes);
gc_collect();
collected = true;
// Try again since we've hopefully freed up space.
keep_looking = true;
GC_ENTER();
}
assert(found_block != 0xffffffff);
// Found free space ending at found_block inclusive.
// Also, set last free ATB index to block after last block we found, for start of
// next scan. Also, whenever we free or shrink a block we must check if this index needs
// adjusting (see gc_realloc and gc_free).
if (!long_lived) {
end_block = found_block;
start_block = found_block - n_free + 1;
if (n_blocks < MICROPY_ATB_INDICES) {
size_t next_free_atb = (found_block + n_blocks) / BLOCKS_PER_ATB;
// Update all atb indices for larger blocks too.
for (size_t i = n_blocks - 1; i < MICROPY_ATB_INDICES; i++) {
MP_STATE_MEM(gc_first_free_atb_index)[i] = next_free_atb;
}
}
} else {
start_block = found_block;
end_block = found_block + n_free - 1;
// Always update the bounds of the long lived area because we assume it is contiguous. (It
// can still be reset by a sweep.)
MP_STATE_MEM(gc_last_free_atb_index) = (found_block - 1) / BLOCKS_PER_ATB;
}
#ifdef LOG_HEAP_ACTIVITY
gc_log_change(start_block, end_block - start_block + 1);
#endif
// mark first block as used head
ATB_FREE_TO_HEAD(start_block);
// mark rest of blocks as used tail
// TODO for a run of many blocks can make this more efficient
for (size_t bl = start_block + 1; bl <= end_block; bl++) {
ATB_FREE_TO_TAIL(bl);
}
// get pointer to first block
// we must create this pointer before unlocking the GC so a collection can find it
void *ret_ptr = (void*)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK);
DEBUG_printf("gc_alloc(%p)\n", ret_ptr);
// If the allocation was long live then update the lowest value. Its used to trigger early
// collects when allocations fail in their respective section. Its also used to ignore calls to
// gc_make_long_lived where the pointer is already in the long lived section.
if (long_lived && ret_ptr < MP_STATE_MEM(gc_lowest_long_lived_ptr)) {
MP_STATE_MEM(gc_lowest_long_lived_ptr) = ret_ptr;
}
#if MICROPY_GC_ALLOC_THRESHOLD
MP_STATE_MEM(gc_alloc_amount) += n_blocks;
#endif
GC_EXIT();
#if MICROPY_GC_CONSERVATIVE_CLEAR
// be conservative and zero out all the newly allocated blocks
memset((byte*)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK);
#else
// zero out the additional bytes of the newly allocated blocks
// This is needed because the blocks may have previously held pointers
// to the heap and will not be set to something else if the caller
// doesn't actually use the entire block. As such they will continue
// to point to the heap and may prevent other blocks from being reclaimed.
memset((byte*)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes);
#endif
#if MICROPY_ENABLE_FINALISER
if (has_finaliser) {
// clear type pointer in case it is never set
((mp_obj_base_t*)ret_ptr)->type = NULL;
// set mp_obj flag only if it has a finaliser
GC_ENTER();
FTB_SET(start_block);
GC_EXIT();
}
#else
(void)has_finaliser;
#endif
#if EXTENSIVE_HEAP_PROFILING
gc_dump_alloc_table();
#endif
return ret_ptr;
}
/*
void *gc_alloc(mp_uint_t n_bytes) {
return _gc_alloc(n_bytes, false);
}
void *gc_alloc_with_finaliser(mp_uint_t n_bytes) {
return _gc_alloc(n_bytes, true);
}
*/
// force the freeing of a piece of memory
// TODO: freeing here does not call finaliser
void gc_free(void *ptr) {
GC_ENTER();
if (MP_STATE_MEM(gc_lock_depth) > 0) {
// TODO how to deal with this error?
GC_EXIT();
return;
}
DEBUG_printf("gc_free(%p)\n", ptr);
if (ptr == NULL) {
GC_EXIT();
} else {
if (MP_STATE_MEM(gc_pool_start) == 0) {
reset_into_safe_mode(GC_ALLOC_OUTSIDE_VM);
}
// get the GC block number corresponding to this pointer
assert(VERIFY_PTR(ptr));
size_t start_block = BLOCK_FROM_PTR(ptr);
assert(ATB_GET_KIND(start_block) == AT_HEAD);
#if MICROPY_ENABLE_FINALISER
FTB_CLEAR(start_block);
#endif
// free head and all of its tail blocks
#ifdef LOG_HEAP_ACTIVITY
gc_log_change(start_block, 0);
#endif
size_t block = start_block;
do {
ATB_ANY_TO_FREE(block);
block += 1;
} while (ATB_GET_KIND(block) == AT_TAIL);
// Update the first free pointer for our size only. Not much calls gc_free directly so there
// is decent chance we'll want to allocate this size again. By only updating the specific
// size we don't risk something smaller fitting in.
size_t n_blocks = block - start_block;
size_t bucket = MIN(n_blocks, MICROPY_ATB_INDICES) - 1;
size_t new_free_atb = start_block / BLOCKS_PER_ATB;
if (new_free_atb < MP_STATE_MEM(gc_first_free_atb_index)[bucket]) {
MP_STATE_MEM(gc_first_free_atb_index)[bucket] = new_free_atb;
}
// set the last_free pointer to this block if it's earlier in the heap
if (new_free_atb > MP_STATE_MEM(gc_last_free_atb_index)) {
MP_STATE_MEM(gc_last_free_atb_index) = new_free_atb;
}
GC_EXIT();
#if EXTENSIVE_HEAP_PROFILING
gc_dump_alloc_table();
#endif
}
}
size_t gc_nbytes(const void *ptr) {
GC_ENTER();
if (VERIFY_PTR(ptr)) {
size_t block = BLOCK_FROM_PTR(ptr);
if (ATB_GET_KIND(block) == AT_HEAD) {
// work out number of consecutive blocks in the chain starting with this on
size_t n_blocks = 0;
do {
n_blocks += 1;
} while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
GC_EXIT();
return n_blocks * BYTES_PER_BLOCK;
}
}
// invalid pointer
GC_EXIT();
return 0;
}
bool gc_has_finaliser(const void *ptr) {
#if MICROPY_ENABLE_FINALISER
GC_ENTER();
if (VERIFY_PTR(ptr)) {
bool has_finaliser = FTB_GET(BLOCK_FROM_PTR(ptr));
GC_EXIT();
return has_finaliser;
}
// invalid pointer
GC_EXIT();
#else
(void) ptr;
#endif
return false;
}
void *gc_make_long_lived(void *old_ptr) {
// If its already in the long lived section then don't bother moving it.
if (old_ptr >= MP_STATE_MEM(gc_lowest_long_lived_ptr)) {
return old_ptr;
}
size_t n_bytes = gc_nbytes(old_ptr);
if (n_bytes == 0) {
return old_ptr;
}
bool has_finaliser = gc_has_finaliser(old_ptr);
// Try and find a new area in the long lived section to copy the memory to.
void* new_ptr = gc_alloc(n_bytes, has_finaliser, true);
if (new_ptr == NULL) {
return old_ptr;
} else if (old_ptr > new_ptr) {
// Return the old pointer if the new one is lower in the heap and free the new space.
gc_free(new_ptr);
return old_ptr;
}
// We copy everything over and let the garbage collection process delete the old copy. That way
// we ensure we don't delete memory that has a second reference. (Though if there is we may
// confuse things when its mutable.)
memcpy(new_ptr, old_ptr, n_bytes);
return new_ptr;
}
#if 0
// old, simple realloc that didn't expand memory in place
void *gc_realloc(void *ptr, mp_uint_t n_bytes) {
mp_uint_t n_existing = gc_nbytes(ptr);
if (n_bytes <= n_existing) {
return ptr;
} else {
bool has_finaliser;
if (ptr == NULL) {
has_finaliser = false;
} else {
#if MICROPY_ENABLE_FINALISER
has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr));
#else
has_finaliser = false;
#endif
}
void *ptr2 = gc_alloc(n_bytes, has_finaliser);
if (ptr2 == NULL) {
return ptr2;
}
memcpy(ptr2, ptr, n_existing);
gc_free(ptr);
return ptr2;
}
}
#else // Alternative gc_realloc impl
void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) {
// check for pure allocation
if (ptr_in == NULL) {
return gc_alloc(n_bytes, false, false);
}
// check for pure free
if (n_bytes == 0) {
gc_free(ptr_in);
return NULL;
}
void *ptr = ptr_in;
GC_ENTER();
if (MP_STATE_MEM(gc_lock_depth) > 0) {
GC_EXIT();
return NULL;
}
// get the GC block number corresponding to this pointer
assert(VERIFY_PTR(ptr));
size_t block = BLOCK_FROM_PTR(ptr);
assert(ATB_GET_KIND(block) == AT_HEAD);
// compute number of new blocks that are requested
size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK;
// Get the total number of consecutive blocks that are already allocated to
// this chunk of memory, and then count the number of free blocks following
// it. Stop if we reach the end of the heap, or if we find enough extra
// free blocks to satisfy the realloc. Note that we need to compute the
// total size of the existing memory chunk so we can correctly and
// efficiently shrink it (see below for shrinking code).
size_t n_free = 0;
size_t n_blocks = 1; // counting HEAD block
size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
for (size_t bl = block + n_blocks; bl < max_block; bl++) {
byte block_type = ATB_GET_KIND(bl);
if (block_type == AT_TAIL) {
n_blocks++;
continue;
}
if (block_type == AT_FREE) {
n_free++;
if (n_blocks + n_free >= new_blocks) {
// stop as soon as we find enough blocks for n_bytes
break;
}
continue;
}
break;
}
// return original ptr if it already has the requested number of blocks
if (new_blocks == n_blocks) {
GC_EXIT();
return ptr_in;
}
// check if we can shrink the allocated area
if (new_blocks < n_blocks) {
// free unneeded tail blocks
for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) {
ATB_ANY_TO_FREE(bl);
}
// set the last_free pointer to end of this block if it's earlier in the heap
size_t new_free_atb = (block + new_blocks) / BLOCKS_PER_ATB;
size_t bucket = MIN(n_blocks - new_blocks, MICROPY_ATB_INDICES) - 1;
if (new_free_atb < MP_STATE_MEM(gc_first_free_atb_index)[bucket]) {
MP_STATE_MEM(gc_first_free_atb_index)[bucket] = new_free_atb;
}
if (new_free_atb > MP_STATE_MEM(gc_last_free_atb_index)) {
MP_STATE_MEM(gc_last_free_atb_index) = new_free_atb;
}
GC_EXIT();
#if EXTENSIVE_HEAP_PROFILING
gc_dump_alloc_table();
#endif
#ifdef LOG_HEAP_ACTIVITY
gc_log_change(block, new_blocks);
#endif
return ptr_in;
}
// check if we can expand in place
if (new_blocks <= n_blocks + n_free) {
// mark few more blocks as used tail
for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) {
assert(ATB_GET_KIND(bl) == AT_FREE);
ATB_FREE_TO_TAIL(bl);
}
GC_EXIT();
#if MICROPY_GC_CONSERVATIVE_CLEAR
// be conservative and zero out all the newly allocated blocks
memset((byte*)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK);
#else
// zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc)
memset((byte*)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes);
#endif
#if EXTENSIVE_HEAP_PROFILING
gc_dump_alloc_table();
#endif
#ifdef LOG_HEAP_ACTIVITY
gc_log_change(block, new_blocks);
#endif
return ptr_in;
}
#if MICROPY_ENABLE_FINALISER
bool ftb_state = FTB_GET(block);
#else
bool ftb_state = false;
#endif
GC_EXIT();
if (!allow_move) {
// not allowed to move memory block so return failure
return NULL;
}
// can't resize inplace; try to find a new contiguous chain
void *ptr_out = gc_alloc(n_bytes, ftb_state, false);
// check that the alloc succeeded
if (ptr_out == NULL) {
return NULL;
}
DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out);
memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK);
gc_free(ptr_in);
return ptr_out;
}
#endif // Alternative gc_realloc impl
bool gc_never_free(void *ptr) {
// Check to make sure the pointer is on the heap in the first place.
if (gc_nbytes(ptr) == 0) {
return false;
}
// Pointers are stored in a linked list where each block is BYTES_PER_BLOCK long and the first
// pointer is the next block of pointers.
void ** current_reference_block = MP_STATE_MEM(permanent_pointers);
while (current_reference_block != NULL) {
for (size_t i = 1; i < BYTES_PER_BLOCK / sizeof(void*); i++) {
if (current_reference_block[i] == NULL) {
current_reference_block[i] = ptr;
return true;
}
}
current_reference_block = current_reference_block[0];
}
void** next_block = gc_alloc(BYTES_PER_BLOCK, false, true);
if (next_block == NULL) {
return false;
}
if (MP_STATE_MEM(permanent_pointers) == NULL) {
MP_STATE_MEM(permanent_pointers) = next_block;
} else {
current_reference_block[0] = next_block;
}
next_block[1] = ptr;
return true;
}
void gc_dump_info(void) {
gc_info_t info;
gc_info(&info);
mp_printf(&mp_plat_print, "GC: total: %u, used: %u, free: %u\n",
(uint)info.total, (uint)info.used, (uint)info.free);
mp_printf(&mp_plat_print, " No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n",
(uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free);
}
void gc_dump_alloc_table(void) {
GC_ENTER();
static const size_t DUMP_BYTES_PER_LINE = 64;
#if !EXTENSIVE_HEAP_PROFILING
// When comparing heap output we don't want to print the starting
// pointer of the heap because it changes from run to run.
mp_printf(&mp_plat_print, "GC memory layout; from %p:", MP_STATE_MEM(gc_pool_start));
#endif
for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) {
if (bl % DUMP_BYTES_PER_LINE == 0) {
// a new line of blocks
{
// check if this line contains only free blocks
size_t bl2 = bl;
while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) {
bl2++;
}
if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) {
// there are at least 2 lines containing only free blocks, so abbreviate their printing
mp_printf(&mp_plat_print, "\n (%u lines all free)", (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE);
bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1));
if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) {
// got to end of heap
break;
}
}
}
// print header for new line of blocks
// (the cast to uint32_t is for 16-bit ports)
//mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff));
mp_printf(&mp_plat_print, "\n%05x: ", (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff));
}
int c = ' ';
switch (ATB_GET_KIND(bl)) {
case AT_FREE: c = '.'; break;
/* this prints out if the object is reachable from BSS or STACK (for unix only)
case AT_HEAD: {
c = 'h';
void **ptrs = (void**)(void*)&mp_state_ctx;
mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t);
for (mp_uint_t i = 0; i < len; i++) {
mp_uint_t ptr = (mp_uint_t)ptrs[i];
if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
c = 'B';
break;
}
}
if (c == 'h') {
ptrs = (void**)&c;
len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t);
for (mp_uint_t i = 0; i < len; i++) {
mp_uint_t ptr = (mp_uint_t)ptrs[i];
if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
c = 'S';
break;
}
}
}
break;
}
*/
/* this prints the uPy object type of the head block */
case AT_HEAD: {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
void **ptr = (void**)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK);
#pragma GCC diagnostic pop
if (*ptr == &mp_type_tuple) { c = 'T'; }
else if (*ptr == &mp_type_list) { c = 'L'; }
else if (*ptr == &mp_type_dict) { c = 'D'; }
else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) { c = 'S'; }
#if MICROPY_PY_BUILTINS_BYTEARRAY
else if (*ptr == &mp_type_bytearray) { c = 'A'; }
#endif
#if MICROPY_PY_ARRAY
else if (*ptr == &mp_type_array) { c = 'A'; }
#endif
#if MICROPY_PY_BUILTINS_FLOAT
else if (*ptr == &mp_type_float) { c = 'F'; }
#endif
else if (*ptr == &mp_type_fun_bc) { c = 'B'; }
else if (*ptr == &mp_type_module) { c = 'M'; }
else {
c = 'h';
#if 0
// This code prints "Q" for qstr-pool data, and "q" for qstr-str
// data. It can be useful to see how qstrs are being allocated,
// but is disabled by default because it is very slow.
for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) {
if ((qstr_pool_t*)ptr == pool) {
c = 'Q';
break;
}
for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) {
if ((const byte*)ptr == *q) {
c = 'q';
break;
}
}
}
#endif
}
break;
}
case AT_TAIL: c = '='; break;
case AT_MARK: c = 'm'; break;
}
mp_printf(&mp_plat_print, "%c", c);
}
mp_print_str(&mp_plat_print, "\n");
GC_EXIT();
}
#if DEBUG_PRINT
void gc_test(void) {
mp_uint_t len = 500;
mp_uint_t *heap = malloc(len);
gc_init(heap, heap + len / sizeof(mp_uint_t));
void *ptrs[100];
{
mp_uint_t **p = gc_alloc(16, false);
p[0] = gc_alloc(64, false);
p[1] = gc_alloc(1, false);
p[2] = gc_alloc(1, false);
p[3] = gc_alloc(1, false);
mp_uint_t ***p2 = gc_alloc(16, false);
p2[0] = p;
p2[1] = p;
ptrs[0] = p2;
}
for (int i = 0; i < 25; i+=2) {
mp_uint_t *p = gc_alloc(i, false);
printf("p=%p\n", p);
if (i & 3) {
//ptrs[i] = p;
}
}
printf("Before GC:\n");
gc_dump_alloc_table();
printf("Starting GC...\n");
gc_collect_start();
gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void*));
gc_collect_end();
printf("After GC:\n");
gc_dump_alloc_table();
}
#endif
#endif // MICROPY_ENABLE_GC