Scott Shawcroft a9dc31a881
Add additional iMX RT support
This adds a script to generate the peripherals files (except clock).

It adds support for the 1015, 1020, 1040, and 1050 EVKs.

Some work was started on 1176 but it isn't working. So, the board
def is in a separate branch.

Fixes #3521. Fixes #2477.
2023-04-28 11:01:13 -07:00

397 lines
13 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Scott Shawcroft
* Copyright (c) 2019 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "periph.h"
#include "sdk/drivers/lpspi/fsl_lpspi.h"
#include <stdio.h>
#if IMXRT11XX
#define LPSPI_MASTER_CLK_FREQ (24000000)
#else
#define LPSPI_MASTER_CLK_FREQ (CLOCK_GetFreq(kCLOCK_Usb1PllPfd0Clk) / (CLOCK_GetDiv(kCLOCK_LpspiDiv) + 1))
#endif
#define MAX_SPI_BUSY_RETRIES 100
// arrays use 0 based numbering: SPI1 is stored at index 0
STATIC bool reserved_spi[MP_ARRAY_SIZE(mcu_spi_banks)];
STATIC bool never_reset_spi[MP_ARRAY_SIZE(mcu_spi_banks)];
#if IMXRT11XX
STATIC const clock_ip_name_t s_lpspiClocks[] = LPSPI_CLOCKS;
#endif
STATIC void config_periph_pin(const mcu_periph_obj_t *periph) {
IOMUXC_SetPinMux(
periph->pin->mux_reg, periph->mux_mode,
periph->input_reg, periph->input_idx,
0,
0);
IOMUXC_SetPinConfig(0, 0, 0, 0,
periph->pin->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_PUS(0)
#if IMXRT10XX
| IOMUXC_SW_PAD_CTL_PAD_HYS(0)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(2)
#endif
| IOMUXC_SW_PAD_CTL_PAD_PUE(0)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_DSE(4)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
}
void spi_reset(void) {
for (uint i = 0; i < MP_ARRAY_SIZE(mcu_spi_banks); i++) {
if (!never_reset_spi[i]) {
reserved_spi[i] = false;
#if IMXRT11XX
// Skip resetting SPIs that aren't clocked. Doing so generates a bus fault.
if ((CCM->LPCG[s_lpspiClocks[i + 1]].STATUS0 & CCM_LPCG_STATUS0_ON_MASK) == ((uint32_t)kCLOCK_Off & CCM_LPCG_STATUS0_ON_MASK)) {
continue;
}
#endif
LPSPI_Deinit(mcu_spi_banks[i]);
}
}
}
void common_hal_busio_spi_construct(busio_spi_obj_t *self,
const mcu_pin_obj_t *clock, const mcu_pin_obj_t *mosi,
const mcu_pin_obj_t *miso, bool half_duplex) {
const uint32_t sck_count = MP_ARRAY_SIZE(mcu_spi_sck_list);
const uint32_t miso_count = MP_ARRAY_SIZE(mcu_spi_sdi_list);
const uint32_t mosi_count = MP_ARRAY_SIZE(mcu_spi_sdo_list);
bool spi_taken = false;
if (half_duplex) {
mp_raise_NotImplementedError(translate("Half duplex SPI is not implemented"));
}
for (uint i = 0; i < sck_count; i++) {
if (mcu_spi_sck_list[i].pin != clock) {
continue;
}
// if both MOSI and MISO exist, loop search normally
if ((mosi != NULL) && (miso != NULL)) {
for (uint j = 0; j < mosi_count; j++) {
if ((mcu_spi_sdo_list[i].pin != mosi)
|| (mcu_spi_sck_list[i].bank_idx != mcu_spi_sdo_list[j].bank_idx)) {
continue;
}
for (uint k = 0; k < miso_count; k++) {
if ((mcu_spi_sdi_list[k].pin != miso) // everything needs the same index
|| (mcu_spi_sck_list[i].bank_idx != mcu_spi_sdi_list[k].bank_idx)) {
continue;
}
// if SPI is taken, break (pins never have >1 periph)
if (reserved_spi[mcu_spi_sck_list[i].bank_idx - 1]) {
spi_taken = true;
break;
}
// store pins if not
self->clock = &mcu_spi_sck_list[i];
self->mosi = &mcu_spi_sdo_list[j];
self->miso = &mcu_spi_sdi_list[k];
break;
}
if (self->clock != NULL || spi_taken) {
break; // Multi-level break to pick lowest peripheral
}
}
if (self->clock != NULL || spi_taken) {
break;
}
// if just MISO, reduce search
} else if (miso != NULL) {
for (uint j = 0; j < miso_count; j++) {
if ((mcu_spi_sdi_list[j].pin != miso) // only SCK and MISO need the same index
|| (mcu_spi_sck_list[i].bank_idx != mcu_spi_sdi_list[j].bank_idx)) {
continue;
}
if (reserved_spi[mcu_spi_sck_list[i].bank_idx - 1]) {
spi_taken = true;
break;
}
self->clock = &mcu_spi_sck_list[i];
self->miso = &mcu_spi_sdi_list[j];
break;
}
if (self->clock != NULL || spi_taken) {
break;
}
// if just MOSI, reduce search
} else if (mosi != NULL) {
for (uint j = 0; j < mosi_count; j++) {
if ((mcu_spi_sdo_list[j].pin != mosi) // only SCK and MOSI need the same index
|| (mcu_spi_sck_list[i].bank_idx != mcu_spi_sdo_list[j].bank_idx)) {
continue;
}
if (reserved_spi[mcu_spi_sck_list[i].bank_idx - 1]) {
spi_taken = true;
break;
}
self->clock = &mcu_spi_sck_list[i];
self->mosi = &mcu_spi_sdo_list[j];
break;
}
if (self->clock != NULL || spi_taken) {
break;
}
} else {
// throw an error immediately
mp_raise_ValueError(translate("Must provide MISO or MOSI pin"));
}
}
if (self->clock != NULL && (self->mosi != NULL || self->miso != NULL)) {
self->spi = mcu_spi_banks[self->clock->bank_idx - 1];
} else {
if (spi_taken) {
mp_raise_ValueError(translate("Hardware busy, try alternative pins"));
} else {
raise_ValueError_invalid_pins();
}
}
config_periph_pin(self->clock);
if (self->mosi != NULL) {
config_periph_pin(self->mosi);
}
if (self->miso != NULL) {
config_periph_pin(self->miso);
}
reserved_spi[self->clock->bank_idx - 1] = true;
lpspi_master_config_t config = { 0 };
LPSPI_MasterGetDefaultConfig(&config);
// Always start at 250khz which is what SD cards need. They are sensitive to
// SPI bus noise before they are put into SPI mode.
config.baudRate = 250000;
LPSPI_MasterInit(self->spi, &config, LPSPI_MASTER_CLK_FREQ);
LPSPI_Enable(self->spi, false);
uint32_t tcrPrescaleValue;
self->baudrate = LPSPI_MasterSetBaudRate(self->spi, config.baudRate, LPSPI_MASTER_CLK_FREQ, &tcrPrescaleValue);
self->spi->TCR = (self->spi->TCR & ~LPSPI_TCR_PRESCALE_MASK) | LPSPI_TCR_PRESCALE(tcrPrescaleValue);
LPSPI_Enable(self->spi, true);
claim_pin(self->clock->pin);
if (self->mosi != NULL) {
claim_pin(self->mosi->pin);
}
if (self->miso != NULL) {
claim_pin(self->miso->pin);
}
}
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
never_reset_spi[self->clock->bank_idx - 1] = true;
common_hal_never_reset_pin(self->clock->pin);
if (self->mosi != NULL) {
common_hal_never_reset_pin(self->mosi->pin);
}
if (self->miso != NULL) {
common_hal_never_reset_pin(self->miso->pin);
}
}
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
return self->clock == NULL;
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self)) {
return;
}
LPSPI_Deinit(self->spi);
reserved_spi[self->clock->bank_idx - 1] = false;
never_reset_spi[self->clock->bank_idx - 1] = false;
common_hal_reset_pin(self->clock->pin);
common_hal_reset_pin(self->mosi->pin);
common_hal_reset_pin(self->miso->pin);
self->clock = NULL;
self->mosi = NULL;
self->miso = NULL;
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self,
uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
if (baudrate > 30000000) {
baudrate = 30000000; // "Absolute maximum frequency of operation (fop) is 30 MHz" -- IMXRT1010CEC.pdf
}
if ((polarity == common_hal_busio_spi_get_polarity(self)) &&
(phase == common_hal_busio_spi_get_phase(self)) &&
(bits == ((self->spi->TCR & LPSPI_TCR_FRAMESZ_MASK) >> LPSPI_TCR_FRAMESZ_SHIFT)) + 1 &&
(baudrate == common_hal_busio_spi_get_frequency(self))) {
return true;
}
lpspi_master_config_t config = { 0 };
LPSPI_MasterGetDefaultConfig(&config);
config.baudRate = baudrate;
config.cpol = polarity;
config.cpha = phase;
config.bitsPerFrame = bits;
// The between-transfer-delay must be equal to the SCK low-time.
// Setting it lower introduces runt pulses, while setting it higher
// wastes time.
config.betweenTransferDelayInNanoSec = (1000000000 / config.baudRate) / 2;
LPSPI_Deinit(self->spi);
LPSPI_MasterInit(self->spi, &config, LPSPI_MASTER_CLK_FREQ);
// Recompute the actual baudrate so that we can set the baudrate
// (frequency) property. We don't need to set TCR because it was
// established by LPSPI_MasterInit, above
uint32_t tcrPrescaleValue;
LPSPI_Enable(self->spi, false);
self->baudrate = LPSPI_MasterSetBaudRate(self->spi, baudrate, LPSPI_MASTER_CLK_FREQ, &tcrPrescaleValue);
LPSPI_Enable(self->spi, true);
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool grabbed_lock = false;
// CRITICAL_SECTION_ENTER()
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
// CRITICAL_SECTION_LEAVE();
return grabbed_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
}
static status_t transfer_common(busio_spi_obj_t *self, lpspi_transfer_t *xfer) {
xfer->configFlags = kLPSPI_MasterPcsContinuous;
status_t status;
int retries = MAX_SPI_BUSY_RETRIES;
do {
status = LPSPI_MasterTransferBlocking(self->spi, xfer);
} while (status == kStatus_LPSPI_Busy && --retries > 0);
if (status != kStatus_Success) {
printf("%s: status %ld\r\n", __func__, status);
}
return status;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self,
const uint8_t *data, size_t len) {
if (len == 0) {
return true;
}
if (self->mosi == NULL) {
mp_raise_ValueError(translate("No MOSI Pin"));
}
lpspi_transfer_t xfer = { 0 };
xfer.txData = (uint8_t *)data;
xfer.dataSize = len;
status_t status = transfer_common(self, &xfer);
return status == kStatus_Success;
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self,
uint8_t *data, size_t len, uint8_t write_value) {
if (len == 0) {
return true;
}
if (self->miso == NULL) {
mp_raise_ValueError(translate("No MISO Pin"));
}
LPSPI_SetDummyData(self->spi, write_value);
lpspi_transfer_t xfer = { 0 };
xfer.rxData = data;
xfer.dataSize = len;
status_t status = transfer_common(self, &xfer);
return status == kStatus_Success;
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, const uint8_t *data_out, uint8_t *data_in, size_t len) {
if (len == 0) {
return true;
}
if (self->miso == NULL || self->mosi == NULL) {
mp_raise_ValueError(translate("Missing MISO or MOSI Pin"));
}
LPSPI_SetDummyData(self->spi, 0xFF);
lpspi_transfer_t xfer = { 0 };
xfer.txData = (uint8_t *)data_out;
xfer.rxData = data_in;
xfer.dataSize = len;
status_t status = transfer_common(self, &xfer);
return status == kStatus_Success;
}
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t *self) {
return self->baudrate;
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t *self) {
return (self->spi->TCR & LPSPI_TCR_CPHA_MASK) == LPSPI_TCR_CPHA_MASK;
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t *self) {
return (self->spi->TCR & LPSPI_TCR_CPOL_MASK) == LPSPI_TCR_CPOL_MASK;
}