Scott Shawcroft 6446010753
Wi-Fi autoconnect and title bar status
This adds support for CIRCUITPY_WIFI_SSID and CIRCUITPY_WIFI_PASSWORD
in `/.env`. When both are defined, CircuitPython will attempt to
connect to the network even when user code isn't running. If the
user code attempts to a network with the same SSID, it will return
immediately. Connecting to another SSID will disconnect from the
auto-connected network. If the user code initiates the connection,
then it will be shutdown after user code exits. (Should match <8
behavior.)

This PR also reworks the default displayio terminal. It now supports
a title bar TileGrid in addition to the (newly renamed) scroll area.
The default title bar is the top row of the display and is positioned
to the right of the Blinka logo when it is enabled. The scroll area
is now below the Blinka logo.

The Wi-Fi auto-connect code now uses the title bar to show its
state including the IP address when connected. It does this through
the "standard" OSC control sequence `ESC ] 0 ; <s> ESC \` where <s>
is the title bar string. This is commonly supported by terminals
so it should work over USB and UART as well.

Related to #6174
2022-06-09 14:55:54 -07:00

681 lines
26 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/displayio/TileGrid.h"
#include "py/runtime.h"
#include "shared-bindings/displayio/Bitmap.h"
#include "shared-bindings/displayio/ColorConverter.h"
#include "shared-bindings/displayio/OnDiskBitmap.h"
#include "shared-bindings/displayio/Palette.h"
#include "shared-bindings/displayio/Shape.h"
void common_hal_displayio_tilegrid_construct(displayio_tilegrid_t *self, mp_obj_t bitmap,
uint16_t bitmap_width_in_tiles, uint16_t bitmap_height_in_tiles,
mp_obj_t pixel_shader, uint16_t width, uint16_t height,
uint16_t tile_width, uint16_t tile_height, uint16_t x, uint16_t y, uint8_t default_tile) {
uint32_t total_tiles = width * height;
// Sprites will only have one tile so save a little memory by inlining values in the pointer.
uint8_t inline_tiles = sizeof(uint8_t *);
if (total_tiles <= inline_tiles) {
self->tiles = 0;
// Pack values into the pointer since there are only a few.
for (uint32_t i = 0; i < inline_tiles; i++) {
((uint8_t *)&self->tiles)[i] = default_tile;
}
self->inline_tiles = true;
} else {
self->tiles = (uint8_t *)m_malloc(total_tiles, false);
for (uint32_t i = 0; i < total_tiles; i++) {
self->tiles[i] = default_tile;
}
self->inline_tiles = false;
}
self->bitmap_width_in_tiles = bitmap_width_in_tiles;
self->tiles_in_bitmap = bitmap_width_in_tiles * bitmap_height_in_tiles;
self->width_in_tiles = width;
self->height_in_tiles = height;
self->x = x;
self->y = y;
self->pixel_width = width * tile_width;
self->pixel_height = height * tile_height;
self->tile_width = tile_width;
self->tile_height = tile_height;
self->bitmap = bitmap;
self->pixel_shader = pixel_shader;
self->in_group = false;
self->hidden = false;
self->hidden_by_parent = false;
self->previous_area.x1 = 0xffff;
self->previous_area.x2 = self->previous_area.x1;
self->flip_x = false;
self->flip_y = false;
self->transpose_xy = false;
self->absolute_transform = NULL;
}
bool common_hal_displayio_tilegrid_get_hidden(displayio_tilegrid_t *self) {
return self->hidden;
}
void common_hal_displayio_tilegrid_set_hidden(displayio_tilegrid_t *self, bool hidden) {
self->hidden = hidden;
if (!hidden) {
self->full_change = true;
}
}
void displayio_tilegrid_set_hidden_by_parent(displayio_tilegrid_t *self, bool hidden) {
self->hidden_by_parent = hidden;
if (!hidden) {
self->full_change = true;
}
}
bool displayio_tilegrid_get_previous_area(displayio_tilegrid_t *self, displayio_area_t *area) {
if (self->previous_area.x1 == self->previous_area.x2) {
return false;
}
displayio_area_copy(&self->previous_area, area);
return true;
}
STATIC void _update_current_x(displayio_tilegrid_t *self) {
uint16_t width;
if (self->transpose_xy) {
width = self->pixel_height;
} else {
width = self->pixel_width;
}
// If there's no transform, substitute an identity transform so the calculations will work.
const displayio_buffer_transform_t *absolute_transform =
self->absolute_transform == NULL
? &null_transform
: self->absolute_transform;
if (absolute_transform->transpose_xy) {
self->current_area.y1 = absolute_transform->y + absolute_transform->dy * self->x;
self->current_area.y2 = absolute_transform->y + absolute_transform->dy * (self->x + width);
if (self->current_area.y2 < self->current_area.y1) {
int16_t temp = self->current_area.y2;
self->current_area.y2 = self->current_area.y1;
self->current_area.y1 = temp;
}
} else {
self->current_area.x1 = absolute_transform->x + absolute_transform->dx * self->x;
self->current_area.x2 = absolute_transform->x + absolute_transform->dx * (self->x + width);
if (self->current_area.x2 < self->current_area.x1) {
int16_t temp = self->current_area.x2;
self->current_area.x2 = self->current_area.x1;
self->current_area.x1 = temp;
}
}
}
STATIC void _update_current_y(displayio_tilegrid_t *self) {
uint16_t height;
if (self->transpose_xy) {
height = self->pixel_width;
} else {
height = self->pixel_height;
}
// If there's no transform, substitute an identity transform so the calculations will work.
const displayio_buffer_transform_t *absolute_transform =
self->absolute_transform == NULL
? &null_transform
: self->absolute_transform;
if (absolute_transform->transpose_xy) {
self->current_area.x1 = absolute_transform->x + absolute_transform->dx * self->y;
self->current_area.x2 = absolute_transform->x + absolute_transform->dx * (self->y + height);
if (self->current_area.x2 < self->current_area.x1) {
int16_t temp = self->current_area.x2;
self->current_area.x2 = self->current_area.x1;
self->current_area.x1 = temp;
}
} else {
self->current_area.y1 = absolute_transform->y + absolute_transform->dy * self->y;
self->current_area.y2 = absolute_transform->y + absolute_transform->dy * (self->y + height);
if (self->current_area.y2 < self->current_area.y1) {
int16_t temp = self->current_area.y2;
self->current_area.y2 = self->current_area.y1;
self->current_area.y1 = temp;
}
}
}
void displayio_tilegrid_update_transform(displayio_tilegrid_t *self,
const displayio_buffer_transform_t *absolute_transform) {
self->in_group = absolute_transform != NULL;
self->absolute_transform = absolute_transform;
if (absolute_transform != NULL) {
self->moved = true;
_update_current_x(self);
_update_current_y(self);
}
}
mp_int_t common_hal_displayio_tilegrid_get_x(displayio_tilegrid_t *self) {
return self->x;
}
void common_hal_displayio_tilegrid_set_x(displayio_tilegrid_t *self, mp_int_t x) {
if (self->x == x) {
return;
}
self->moved = true;
self->x = x;
if (self->absolute_transform != NULL) {
_update_current_x(self);
}
}
mp_int_t common_hal_displayio_tilegrid_get_y(displayio_tilegrid_t *self) {
return self->y;
}
void common_hal_displayio_tilegrid_set_y(displayio_tilegrid_t *self, mp_int_t y) {
if (self->y == y) {
return;
}
self->moved = true;
self->y = y;
if (self->absolute_transform != NULL) {
_update_current_y(self);
}
}
mp_obj_t common_hal_displayio_tilegrid_get_pixel_shader(displayio_tilegrid_t *self) {
return self->pixel_shader;
}
void common_hal_displayio_tilegrid_set_pixel_shader(displayio_tilegrid_t *self, mp_obj_t pixel_shader) {
self->pixel_shader = pixel_shader;
self->full_change = true;
}
mp_obj_t common_hal_displayio_tilegrid_get_bitmap(displayio_tilegrid_t *self) {
return self->bitmap;
}
void common_hal_displayio_tilegrid_set_bitmap(displayio_tilegrid_t *self, mp_obj_t bitmap) {
self->bitmap = bitmap;
self->full_change = true;
}
uint16_t common_hal_displayio_tilegrid_get_width(displayio_tilegrid_t *self) {
return self->width_in_tiles;
}
uint16_t common_hal_displayio_tilegrid_get_height(displayio_tilegrid_t *self) {
return self->height_in_tiles;
}
uint16_t common_hal_displayio_tilegrid_get_tile_width(displayio_tilegrid_t *self) {
return self->tile_width;
}
uint16_t common_hal_displayio_tilegrid_get_tile_height(displayio_tilegrid_t *self) {
return self->tile_height;
}
uint8_t common_hal_displayio_tilegrid_get_tile(displayio_tilegrid_t *self, uint16_t x, uint16_t y) {
uint8_t *tiles = self->tiles;
if (self->inline_tiles) {
tiles = (uint8_t *)&self->tiles;
}
if (tiles == NULL) {
return 0;
}
return tiles[y * self->width_in_tiles + x];
}
void common_hal_displayio_tilegrid_set_tile(displayio_tilegrid_t *self, uint16_t x, uint16_t y, uint8_t tile_index) {
if (tile_index >= self->tiles_in_bitmap) {
mp_raise_ValueError(translate("Tile index out of bounds"));
}
uint8_t *tiles = self->tiles;
if (self->inline_tiles) {
tiles = (uint8_t *)&self->tiles;
}
if (tiles == NULL) {
return;
}
tiles[y * self->width_in_tiles + x] = tile_index;
displayio_area_t temp_area;
displayio_area_t *tile_area;
if (!self->partial_change) {
tile_area = &self->dirty_area;
} else {
tile_area = &temp_area;
}
int16_t tx = (x - self->top_left_x) % self->width_in_tiles;
if (tx < 0) {
tx += self->width_in_tiles;
}
tile_area->x1 = tx * self->tile_width;
tile_area->x2 = tile_area->x1 + self->tile_width;
int16_t ty = (y - self->top_left_y) % self->height_in_tiles;
if (ty < 0) {
ty += self->height_in_tiles;
}
tile_area->y1 = ty * self->tile_height;
tile_area->y2 = tile_area->y1 + self->tile_height;
if (self->partial_change) {
displayio_area_union(&self->dirty_area, &temp_area, &self->dirty_area);
}
self->partial_change = true;
}
void common_hal_displayio_tilegrid_set_all_tiles(displayio_tilegrid_t *self, uint8_t tile_index) {
if (tile_index >= self->tiles_in_bitmap) {
mp_raise_ValueError(translate("Tile index out of bounds"));
}
uint8_t *tiles = self->tiles;
if (self->inline_tiles) {
tiles = (uint8_t *)&self->tiles;
}
if (tiles == NULL) {
return;
}
for (uint16_t x = 0; x < self->width_in_tiles; x++) {
for (uint16_t y = 0; y < self->height_in_tiles; y++) {
tiles[y * self->width_in_tiles + x] = tile_index;
}
}
self->full_change = true;
}
bool common_hal_displayio_tilegrid_get_flip_x(displayio_tilegrid_t *self) {
return self->flip_x;
}
void common_hal_displayio_tilegrid_set_flip_x(displayio_tilegrid_t *self, bool flip_x) {
if (self->flip_x == flip_x) {
return;
}
self->flip_x = flip_x;
self->full_change = true;
}
bool common_hal_displayio_tilegrid_get_flip_y(displayio_tilegrid_t *self) {
return self->flip_y;
}
void common_hal_displayio_tilegrid_set_flip_y(displayio_tilegrid_t *self, bool flip_y) {
if (self->flip_y == flip_y) {
return;
}
self->flip_y = flip_y;
self->full_change = true;
}
bool common_hal_displayio_tilegrid_get_transpose_xy(displayio_tilegrid_t *self) {
return self->transpose_xy;
}
void common_hal_displayio_tilegrid_set_transpose_xy(displayio_tilegrid_t *self, bool transpose_xy) {
if (self->transpose_xy == transpose_xy) {
return;
}
self->transpose_xy = transpose_xy;
// Square TileGrids do not change dimensions when transposed.
if (self->pixel_width == self->pixel_height) {
self->full_change = true;
return;
}
_update_current_x(self);
_update_current_y(self);
self->moved = true;
}
bool common_hal_displayio_tilegrid_contains(displayio_tilegrid_t *self, uint16_t x, uint16_t y) {
uint16_t right_edge = self->x + (self->width_in_tiles * self->tile_width);
uint16_t bottom_edge = self->y + (self->height_in_tiles * self->tile_height);
return x >= self->x && x < right_edge &&
y >= self->y && y < bottom_edge;
}
void common_hal_displayio_tilegrid_set_top_left(displayio_tilegrid_t *self, uint16_t x, uint16_t y) {
self->top_left_x = x;
self->top_left_y = y;
self->full_change = true;
}
bool displayio_tilegrid_fill_area(displayio_tilegrid_t *self,
const _displayio_colorspace_t *colorspace, const displayio_area_t *area,
uint32_t *mask, uint32_t *buffer) {
// If no tiles are present we have no impact.
uint8_t *tiles = self->tiles;
if (self->inline_tiles) {
tiles = (uint8_t *)&self->tiles;
}
if (tiles == NULL) {
return false;
}
bool hidden = self->hidden || self->hidden_by_parent;
if (hidden) {
return false;
}
displayio_area_t overlap;
if (!displayio_area_compute_overlap(area, &self->current_area, &overlap)) {
return false;
}
int16_t x_stride = 1;
int16_t y_stride = displayio_area_width(area);
bool flip_x = self->flip_x;
bool flip_y = self->flip_y;
if (self->transpose_xy != self->absolute_transform->transpose_xy) {
bool temp_flip = flip_x;
flip_x = flip_y;
flip_y = temp_flip;
}
// How many pixels are outside of our area between us and the start of the row.
uint16_t start = 0;
if ((self->absolute_transform->dx < 0) != flip_x) {
start += (area->x2 - area->x1 - 1) * x_stride;
x_stride *= -1;
}
if ((self->absolute_transform->dy < 0) != flip_y) {
start += (area->y2 - area->y1 - 1) * y_stride;
y_stride *= -1;
}
// Track if this layer finishes filling in the given area. We can ignore any remaining
// layers at that point.
bool full_coverage = displayio_area_equal(area, &overlap);
// TODO(tannewt): Skip coverage tracking if all pixels outside the overlap have already been
// set and our palette is all opaque.
// TODO(tannewt): Check to see if the pixel_shader has any transparency. If it doesn't then we
// can either return full coverage or bulk update the mask.
displayio_area_t transformed;
displayio_area_transform_within(flip_x != (self->absolute_transform->dx < 0), flip_y != (self->absolute_transform->dy < 0), self->transpose_xy != self->absolute_transform->transpose_xy,
&overlap,
&self->current_area,
&transformed);
int16_t start_x = (transformed.x1 - self->current_area.x1);
int16_t end_x = (transformed.x2 - self->current_area.x1);
int16_t start_y = (transformed.y1 - self->current_area.y1);
int16_t end_y = (transformed.y2 - self->current_area.y1);
int16_t y_shift = 0;
int16_t x_shift = 0;
if ((self->absolute_transform->dx < 0) != flip_x) {
x_shift = area->x2 - overlap.x2;
} else {
x_shift = overlap.x1 - area->x1;
}
if ((self->absolute_transform->dy < 0) != flip_y) {
y_shift = area->y2 - overlap.y2;
} else {
y_shift = overlap.y1 - area->y1;
}
// This untransposes x and y so it aligns with bitmap rows.
if (self->transpose_xy != self->absolute_transform->transpose_xy) {
int16_t temp_stride = x_stride;
x_stride = y_stride;
y_stride = temp_stride;
int16_t temp_shift = x_shift;
x_shift = y_shift;
y_shift = temp_shift;
}
uint8_t pixels_per_byte = 8 / colorspace->depth;
displayio_input_pixel_t input_pixel;
displayio_output_pixel_t output_pixel;
for (input_pixel.y = start_y; input_pixel.y < end_y; ++input_pixel.y) {
int16_t row_start = start + (input_pixel.y - start_y + y_shift) * y_stride; // in pixels
int16_t local_y = input_pixel.y / self->absolute_transform->scale;
for (input_pixel.x = start_x; input_pixel.x < end_x; ++input_pixel.x) {
// Compute the destination pixel in the buffer and mask based on the transformations.
int16_t offset = row_start + (input_pixel.x - start_x + x_shift) * x_stride; // in pixels
// This is super useful for debugging out of range accesses. Uncomment to use.
// if (offset < 0 || offset >= (int32_t) displayio_area_size(area)) {
// asm("bkpt");
// }
// Check the mask first to see if the pixel has already been set.
if ((mask[offset / 32] & (1 << (offset % 32))) != 0) {
continue;
}
int16_t local_x = input_pixel.x / self->absolute_transform->scale;
uint16_t tile_location = ((local_y / self->tile_height + self->top_left_y) % self->height_in_tiles) * self->width_in_tiles + (local_x / self->tile_width + self->top_left_x) % self->width_in_tiles;
input_pixel.tile = tiles[tile_location];
input_pixel.tile_x = (input_pixel.tile % self->bitmap_width_in_tiles) * self->tile_width + local_x % self->tile_width;
input_pixel.tile_y = (input_pixel.tile / self->bitmap_width_in_tiles) * self->tile_height + local_y % self->tile_height;
output_pixel.pixel = 0;
input_pixel.pixel = 0;
// We always want to read bitmap pixels by row first and then transpose into the destination
// buffer because most bitmaps are row associated.
if (mp_obj_is_type(self->bitmap, &displayio_bitmap_type)) {
input_pixel.pixel = common_hal_displayio_bitmap_get_pixel(self->bitmap, input_pixel.tile_x, input_pixel.tile_y);
} else if (mp_obj_is_type(self->bitmap, &displayio_shape_type)) {
input_pixel.pixel = common_hal_displayio_shape_get_pixel(self->bitmap, input_pixel.tile_x, input_pixel.tile_y);
} else if (mp_obj_is_type(self->bitmap, &displayio_ondiskbitmap_type)) {
input_pixel.pixel = common_hal_displayio_ondiskbitmap_get_pixel(self->bitmap, input_pixel.tile_x, input_pixel.tile_y);
}
output_pixel.opaque = true;
if (self->pixel_shader == mp_const_none) {
output_pixel.pixel = input_pixel.pixel;
} else if (mp_obj_is_type(self->pixel_shader, &displayio_palette_type)) {
output_pixel.opaque = displayio_palette_get_color(self->pixel_shader, colorspace, input_pixel.pixel, &output_pixel.pixel);
} else if (mp_obj_is_type(self->pixel_shader, &displayio_colorconverter_type)) {
displayio_colorconverter_convert(self->pixel_shader, colorspace, &input_pixel, &output_pixel);
}
if (!output_pixel.opaque) {
// A pixel is transparent so we haven't fully covered the area ourselves.
full_coverage = false;
} else {
mask[offset / 32] |= 1 << (offset % 32);
if (colorspace->depth == 16) {
*(((uint16_t *)buffer) + offset) = output_pixel.pixel;
} else if (colorspace->depth == 32) {
*(((uint32_t *)buffer) + offset) = output_pixel.pixel;
} else if (colorspace->depth == 8) {
*(((uint8_t *)buffer) + offset) = output_pixel.pixel;
} else if (colorspace->depth < 8) {
// Reorder the offsets to pack multiple rows into a byte (meaning they share a column).
if (!colorspace->pixels_in_byte_share_row) {
uint16_t width = displayio_area_width(area);
uint16_t row = offset / width;
uint16_t col = offset % width;
// Dividing by pixels_per_byte does truncated division even if we multiply it back out.
offset = col * pixels_per_byte + (row / pixels_per_byte) * pixels_per_byte * width + row % pixels_per_byte;
// Also useful for validating that the bitpacking worked correctly.
// if (offset > displayio_area_size(area)) {
// asm("bkpt");
// }
}
uint8_t shift = (offset % pixels_per_byte) * colorspace->depth;
if (colorspace->reverse_pixels_in_byte) {
// Reverse the shift by subtracting it from the leftmost shift.
shift = (pixels_per_byte - 1) * colorspace->depth - shift;
}
((uint8_t *)buffer)[offset / pixels_per_byte] |= output_pixel.pixel << shift;
}
}
(void)input_pixel;
}
}
return full_coverage;
}
void displayio_tilegrid_finish_refresh(displayio_tilegrid_t *self) {
bool first_draw = self->previous_area.x1 == self->previous_area.x2;
bool hidden = self->hidden || self->hidden_by_parent;
if (!first_draw && hidden) {
self->previous_area.x2 = self->previous_area.x1;
} else if (self->moved || first_draw) {
displayio_area_copy(&self->current_area, &self->previous_area);
}
self->moved = false;
self->full_change = false;
self->partial_change = false;
if (mp_obj_is_type(self->pixel_shader, &displayio_palette_type)) {
displayio_palette_finish_refresh(self->pixel_shader);
} else if (mp_obj_is_type(self->pixel_shader, &displayio_colorconverter_type)) {
displayio_colorconverter_finish_refresh(self->pixel_shader);
}
if (mp_obj_is_type(self->bitmap, &displayio_bitmap_type)) {
displayio_bitmap_finish_refresh(self->bitmap);
} else if (mp_obj_is_type(self->bitmap, &displayio_shape_type)) {
displayio_shape_finish_refresh(self->bitmap);
} else if (mp_obj_is_type(self->bitmap, &displayio_ondiskbitmap_type)) {
// OnDiskBitmap changes will trigger a complete reload so no need to
// track changes.
}
// TODO(tannewt): We could double buffer changes to position and move them over here.
// That way they won't change during a refresh and tear.
}
displayio_area_t *displayio_tilegrid_get_refresh_areas(displayio_tilegrid_t *self, displayio_area_t *tail) {
bool first_draw = self->previous_area.x1 == self->previous_area.x2;
bool hidden = self->hidden || self->hidden_by_parent;
// Check hidden first because it trumps all other changes.
if (hidden) {
if (!first_draw) {
self->previous_area.next = tail;
return &self->previous_area;
} else {
return tail;
}
} else if (self->moved && !first_draw) {
displayio_area_union(&self->previous_area, &self->current_area, &self->dirty_area);
if (displayio_area_size(&self->dirty_area) <= 2U * self->pixel_width * self->pixel_height) {
self->dirty_area.next = tail;
return &self->dirty_area;
}
self->previous_area.next = tail;
self->current_area.next = &self->previous_area;
return &self->current_area;
}
// If we have an in-memory bitmap, then check it for modifications.
if (mp_obj_is_type(self->bitmap, &displayio_bitmap_type)) {
displayio_area_t *refresh_area = displayio_bitmap_get_refresh_areas(self->bitmap, tail);
if (refresh_area != tail) {
// Special case a TileGrid that shows a full bitmap and use its
// dirty area. Copy it to ours so we can transform it.
if (self->tiles_in_bitmap == 1) {
displayio_area_copy(refresh_area, &self->dirty_area);
self->partial_change = true;
} else {
self->full_change = true;
}
}
} else if (mp_obj_is_type(self->bitmap, &displayio_shape_type)) {
displayio_area_t *refresh_area = displayio_shape_get_refresh_areas(self->bitmap, tail);
if (refresh_area != tail) {
displayio_area_copy(refresh_area, &self->dirty_area);
self->partial_change = true;
}
}
self->full_change = self->full_change ||
(mp_obj_is_type(self->pixel_shader, &displayio_palette_type) &&
displayio_palette_needs_refresh(self->pixel_shader)) ||
(mp_obj_is_type(self->pixel_shader, &displayio_colorconverter_type) &&
displayio_colorconverter_needs_refresh(self->pixel_shader));
if (self->full_change || first_draw) {
self->current_area.next = tail;
return &self->current_area;
}
if (self->partial_change) {
int16_t x = self->x;
int16_t y = self->y;
if (self->absolute_transform->transpose_xy) {
int16_t temp = y;
y = x;
x = temp;
}
int16_t x1 = self->dirty_area.x1;
int16_t x2 = self->dirty_area.x2;
if (self->flip_x) {
x1 = self->pixel_width - x1;
x2 = self->pixel_width - x2;
}
int16_t y1 = self->dirty_area.y1;
int16_t y2 = self->dirty_area.y2;
if (self->flip_y) {
y1 = self->pixel_height - y1;
y2 = self->pixel_height - y2;
}
if (self->transpose_xy != self->absolute_transform->transpose_xy) {
int16_t temp1 = y1, temp2 = y2;
y1 = x1;
x1 = temp1;
y2 = x2;
x2 = temp2;
}
self->dirty_area.x1 = self->absolute_transform->x + self->absolute_transform->dx * (x + x1);
self->dirty_area.y1 = self->absolute_transform->y + self->absolute_transform->dy * (y + y1);
self->dirty_area.x2 = self->absolute_transform->x + self->absolute_transform->dx * (x + x2);
self->dirty_area.y2 = self->absolute_transform->y + self->absolute_transform->dy * (y + y2);
if (self->dirty_area.y2 < self->dirty_area.y1) {
int16_t temp = self->dirty_area.y2;
self->dirty_area.y2 = self->dirty_area.y1;
self->dirty_area.y1 = temp;
}
if (self->dirty_area.x2 < self->dirty_area.x1) {
int16_t temp = self->dirty_area.x2;
self->dirty_area.x2 = self->dirty_area.x1;
self->dirty_area.x1 = temp;
}
self->dirty_area.next = tail;
return &self->dirty_area;
}
return tail;
}