circuitpython/ports/stm32/usb.c

1069 lines
36 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014, 2015 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdarg.h>
#include <string.h>
#include "usbd_core.h"
#include "usbd_desc.h"
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"
#include "usbd_msc_interface.h"
#include "usbd_hid_interface.h"
#include "py/objstr.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "bufhelper.h"
#include "storage.h"
#include "sdcard.h"
#include "usb.h"
#if MICROPY_HW_ENABLE_USB
// Work out which USB device to use as the main one (the one with the REPL)
#if !defined(MICROPY_HW_USB_MAIN_DEV)
#if defined(MICROPY_HW_USB_FS)
#define MICROPY_HW_USB_MAIN_DEV (USB_PHY_FS_ID)
#elif defined(MICROPY_HW_USB_HS)
#define MICROPY_HW_USB_MAIN_DEV (USB_PHY_HS_ID)
#else
#error Unable to determine proper MICROPY_HW_USB_MAIN_DEV to use
#endif
#endif
// Maximum number of endpoints (excluding EP0)
#if defined(STM32L0) || defined(STM32WB)
#define MAX_ENDPOINT(dev_id) (7)
#elif defined(STM32L4)
#define MAX_ENDPOINT(dev_id) (5)
#elif defined(STM32F4)
#define MAX_ENDPOINT(dev_id) ((dev_id) == USB_PHY_FS_ID ? 3 : 5)
#elif defined(STM32F7)
#define MAX_ENDPOINT(dev_id) ((dev_id) == USB_PHY_FS_ID ? 5 : 8)
#elif defined(STM32H7)
#define MAX_ENDPOINT(dev_id) (8)
#endif
STATIC void pyb_usb_vcp_init0(void);
// this will be persistent across a soft-reset
mp_uint_t pyb_usb_flags = 0;
typedef struct _usb_device_t {
uint32_t enabled;
USBD_HandleTypeDef hUSBDDevice;
usbd_cdc_msc_hid_state_t usbd_cdc_msc_hid_state;
usbd_cdc_itf_t usbd_cdc_itf[MICROPY_HW_USB_CDC_NUM];
#if MICROPY_HW_USB_HID
usbd_hid_itf_t usbd_hid_itf;
#endif
} usb_device_t;
usb_device_t usb_device = {0};
pyb_usb_storage_medium_t pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_NONE;
#if !MICROPY_HW_USB_IS_MULTI_OTG
// Units of FIFO size arrays below are 4x 16-bit words = 8 bytes
// There are 512x 16-bit words it total to use here (when using PCD_SNG_BUF)
// EP0(out), EP0(in), MSC/HID(out), MSC/HID(in), unused, CDC_CMD(in), CDC_DATA(out), CDC_DATA(in)
STATIC const uint8_t usbd_fifo_size_cdc1[] = {16, 16, 16, 16, 0, 16, 16, 16};
#else
// Units of FIFO size arrays below are 4x 32-bit words = 16 bytes
// FS: there are 320x 32-bit words in total to use here
// HS: there are 1024x 32-bit words in total to use here
// RX; EP0(in), MSC/HID, CDC_CMD, CDC_DATA
STATIC const uint8_t usbd_fifo_size_cdc1[] = {
32, 8, 16, 8, 16, 0, 0, // FS: RX, EP0(in), 5x IN endpoints
#if MICROPY_HW_USB_HS
116, 8, 64, 4, 64, 0, 0, 0, 0, 0, // HS: RX, EP0(in), 8x IN endpoints
#endif
};
// RX; EP0(in), MSC/HID, CDC_CMD, CDC_DATA, HID
STATIC const uint8_t usbd_fifo_size_cdc1_msc_hid[] = {
32, 8, 16, 4, 12, 8, 0,
#if MICROPY_HW_USB_HS
116, 8, 64, 4, 56, 8, 0, 0, 0, 0,
#endif
};
#if MICROPY_HW_USB_CDC_NUM >= 2
// RX; EP0(in), MSC/HID, CDC_CMD, CDC_DATA, CDC2_CMD, CDC2_DATA
STATIC const uint8_t usbd_fifo_size_cdc2[] = {
32, 8, 16, 4, 8, 4, 8,
#if MICROPY_HW_USB_HS
116, 8, 64, 2, 32, 2, 32, 0, 0, 0,
#endif
};
// RX; EP0(in), MSC/HID, CDC_CMD, CDC_DATA, CDC2_CMD/HID, CDC2_DATA, HID
STATIC const uint8_t usbd_fifo_size_cdc2_msc_hid[] = {
0, 0, 0, 0, 0, 0, 0, // FS: can't support 2xVCP+MSC+HID
#if MICROPY_HW_USB_HS
102, 8, 64, 2, 32, 8, 32, 8, 0, 0,
#endif
};
#endif
#if MICROPY_HW_USB_CDC_NUM >= 3
// RX; EP0(in), MSC/HID, CDC_CMD, CDC_DATA, CDC2_CMD, CDC2_DATA, CDC3_CMD, CDC3_DATA
STATIC const uint8_t usbd_fifo_size_cdc3[] = {
0, 0, 0, 0, 0, 0, 0, // FS: can't support 3x VCP mode
#if MICROPY_HW_USB_HS
82, 8, 64, 2, 32, 2, 32, 2, 32, 0,
#endif
};
// RX; EP0(in), MSC/HID, CDC_CMD, CDC_DATA, CDC2_CMD/HID, CDC2_DATA, CDC3_CMD/HID, CDC3_DATA, HID
STATIC const uint8_t usbd_fifo_size_cdc3_msc_hid[] = {
0, 0, 0, 0, 0, 0, 0, // FS: can't support 3x VCP mode
#if MICROPY_HW_USB_HS
82, 8, 64, 2, 25, 8, 25, 8, 25, 8,
#endif
};
#endif
#endif
#if MICROPY_HW_USB_HID
// predefined hid mouse data
STATIC const mp_obj_str_t pyb_usb_hid_mouse_desc_obj = {
{&mp_type_bytes},
0, // hash not valid
USBD_HID_MOUSE_REPORT_DESC_SIZE,
USBD_HID_MOUSE_ReportDesc,
};
const mp_rom_obj_tuple_t pyb_usb_hid_mouse_obj = {
{&mp_type_tuple},
5,
{
MP_ROM_INT(1), // subclass: boot
MP_ROM_INT(2), // protocol: mouse
MP_ROM_INT(USBD_HID_MOUSE_MAX_PACKET),
MP_ROM_INT(8), // polling interval: 8ms
MP_ROM_PTR(&pyb_usb_hid_mouse_desc_obj),
},
};
// predefined hid keyboard data
STATIC const mp_obj_str_t pyb_usb_hid_keyboard_desc_obj = {
{&mp_type_bytes},
0, // hash not valid
USBD_HID_KEYBOARD_REPORT_DESC_SIZE,
USBD_HID_KEYBOARD_ReportDesc,
};
const mp_rom_obj_tuple_t pyb_usb_hid_keyboard_obj = {
{&mp_type_tuple},
5,
{
MP_ROM_INT(1), // subclass: boot
MP_ROM_INT(1), // protocol: keyboard
MP_ROM_INT(USBD_HID_KEYBOARD_MAX_PACKET),
MP_ROM_INT(8), // polling interval: 8ms
MP_ROM_PTR(&pyb_usb_hid_keyboard_desc_obj),
},
};
#endif
void pyb_usb_init0(void) {
for (int i = 0; i < MICROPY_HW_USB_CDC_NUM; ++i) {
usb_device.usbd_cdc_itf[i].attached_to_repl = false;
}
MP_STATE_PORT(pyb_hid_report_desc) = MP_OBJ_NULL;
pyb_usb_vcp_init0();
}
int pyb_usb_dev_detect(void) {
if (usb_device.enabled) {
return usb_device.hUSBDDevice.id;
}
#if MICROPY_HW_USB_FS && MICROPY_HW_USB_HS
// Try to auto-detect which USB is connected by reading DP/DM pins
for (int i = 0; i < 2; ++i) {
mp_hal_pin_obj_t dp = i == 0 ? pyb_pin_USB_DP : pyb_pin_USB_HS_DP;
mp_hal_pin_obj_t dm = i == 0 ? pyb_pin_USB_DM : pyb_pin_USB_HS_DM;
mp_hal_pin_config(dp, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
mp_hal_pin_config(dm, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0);
int state = mp_hal_pin_read(dp) == 0 && mp_hal_pin_read(dm) == 0;
mp_hal_pin_config(dp, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
mp_hal_pin_config(dm, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0);
if (state) {
// DP and DM pins are actively held low so assume USB is connected
return i == 0 ? USB_PHY_FS_ID : USB_PHY_HS_ID;
}
}
#endif
return MICROPY_HW_USB_MAIN_DEV;
}
bool pyb_usb_dev_init(int dev_id, uint16_t vid, uint16_t pid, uint8_t mode, size_t msc_n, const void *msc_unit, USBD_HID_ModeInfoTypeDef *hid_info) {
usb_device_t *usb_dev = &usb_device;
if (!usb_dev->enabled) {
// only init USB once in the device's power-lifetime
// set up the USBD state
USBD_HandleTypeDef *usbd = &usb_dev->hUSBDDevice;
usbd->id = dev_id;
usbd->dev_state = USBD_STATE_DEFAULT;
usbd->pDesc = (USBD_DescriptorsTypeDef*)&USBD_Descriptors;
usbd->pClass = &USBD_CDC_MSC_HID;
usb_dev->usbd_cdc_msc_hid_state.pdev = usbd;
for (int i = 0; i < MICROPY_HW_USB_CDC_NUM; ++i) {
usb_dev->usbd_cdc_msc_hid_state.cdc[i] = &usb_dev->usbd_cdc_itf[i].base;
}
#if MICROPY_HW_USB_HID
usb_dev->usbd_cdc_msc_hid_state.hid = &usb_dev->usbd_hid_itf.base;
#endif
usbd->pClassData = &usb_dev->usbd_cdc_msc_hid_state;
// configure the VID, PID and the USBD mode (interfaces it will expose)
int cdc_only = (mode & USBD_MODE_IFACE_MASK) == USBD_MODE_CDC;
USBD_SetVIDPIDRelease(&usb_dev->usbd_cdc_msc_hid_state, vid, pid, 0x0200, cdc_only);
if (USBD_SelectMode(&usb_dev->usbd_cdc_msc_hid_state, mode, hid_info, MAX_ENDPOINT(dev_id)) != 0) {
return false;
}
#if MICROPY_HW_USB_MSC
// Configure the MSC interface
const void *msc_unit_default[1];
if (msc_n == 0) {
msc_n = 1;
msc_unit = msc_unit_default;
switch (pyb_usb_storage_medium) {
#if MICROPY_HW_ENABLE_SDCARD
case PYB_USB_STORAGE_MEDIUM_SDCARD:
msc_unit_default[0] = &pyb_sdcard_type;
break;
#endif
default:
msc_unit_default[0] = &pyb_flash_type;
break;
}
}
usbd_msc_init_lu(msc_n, msc_unit);
USBD_MSC_RegisterStorage(&usb_dev->usbd_cdc_msc_hid_state, (USBD_StorageTypeDef*)&usbd_msc_fops);
#endif
const uint8_t *fifo_size = usbd_fifo_size_cdc1;
#if MICROPY_HW_USB_IS_MULTI_OTG
if ((mode & USBD_MODE_MSC_HID) == USBD_MODE_MSC_HID) {
fifo_size = usbd_fifo_size_cdc1_msc_hid;
}
#endif
#if MICROPY_HW_USB_CDC_NUM >= 3
if (mode & USBD_MODE_IFACE_CDC(2)) {
if ((mode & USBD_MODE_MSC_HID) == USBD_MODE_MSC_HID) {
fifo_size = usbd_fifo_size_cdc3_msc_hid;
} else {
fifo_size = usbd_fifo_size_cdc3;
}
} else
#endif
#if MICROPY_HW_USB_CDC_NUM >= 2
if (mode & USBD_MODE_IFACE_CDC(1)) {
if ((mode & USBD_MODE_MSC_HID) == USBD_MODE_MSC_HID) {
fifo_size = usbd_fifo_size_cdc2_msc_hid;
} else {
fifo_size = usbd_fifo_size_cdc2;
}
}
#endif
// start the USB device
USBD_LL_Init(usbd, (mode & USBD_MODE_HIGH_SPEED) != 0, fifo_size);
USBD_LL_Start(usbd);
usb_dev->enabled = true;
}
return true;
}
void pyb_usb_dev_deinit(void) {
usb_device_t *usb_dev = &usb_device;
if (usb_dev->enabled) {
USBD_Stop(&usb_dev->hUSBDDevice);
USBD_DeInit(&usb_dev->hUSBDDevice);
usb_dev->enabled = false;
}
}
bool usb_vcp_is_enabled(void) {
return usb_device.enabled;
}
int usb_vcp_recv_byte(uint8_t *c) {
return usbd_cdc_rx(&usb_device.usbd_cdc_itf[0], c, 1, 0);
}
void usb_vcp_send_strn(const char *str, int len) {
if (usb_device.enabled) {
usbd_cdc_tx_always(&usb_device.usbd_cdc_itf[0], (const uint8_t*)str, len);
}
}
usbd_cdc_itf_t *usb_vcp_get(int idx) {
return &usb_device.usbd_cdc_itf[idx];
}
/******************************************************************************/
// MicroPython bindings for USB
/*
Philosophy of USB driver and Python API: pyb.usb_mode(...) configures the USB
on the board. The USB itself is not an entity, rather the interfaces are, and
can be accessed by creating objects, such as pyb.USB_VCP() and pyb.USB_HID().
We have:
pyb.usb_mode() # return the current usb mode
pyb.usb_mode(None) # disable USB
pyb.usb_mode('VCP') # enable with VCP interface
pyb.usb_mode('VCP+MSC') # enable with VCP and MSC interfaces
pyb.usb_mode('VCP+HID') # enable with VCP and HID, defaulting to mouse protocol
pyb.usb_mode('VCP+HID', vid=0xf055, pid=0x9800) # specify VID and PID
pyb.usb_mode('VCP+HID', hid=pyb.hid_mouse)
pyb.usb_mode('VCP+HID', hid=pyb.hid_keyboard)
pyb.usb_mode('VCP+HID', pid=0x1234, hid=(subclass, protocol, max_packet_len, polling_interval, report_desc))
vcp = pyb.USB_VCP() # get the VCP device for read/write
hid = pyb.USB_HID() # get the HID device for write/poll
Possible extensions:
pyb.usb_mode('host', ...)
pyb.usb_mode('OTG', ...)
pyb.usb_mode(..., port=2) # for second USB port
*/
STATIC mp_obj_t pyb_usb_mode(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {
ARG_mode, ARG_port, ARG_vid, ARG_pid,
#if MICROPY_HW_USB_MSC
ARG_msc,
#endif
#if MICROPY_HW_USB_HID
ARG_hid,
#endif
#if USBD_SUPPORT_HS_MODE
ARG_high_speed
#endif
};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_port, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_vid, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = USBD_VID} },
{ MP_QSTR_pid, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
#if MICROPY_HW_USB_MSC
{ MP_QSTR_msc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_empty_tuple_obj)} },
#endif
#if MICROPY_HW_USB_HID
{ MP_QSTR_hid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&pyb_usb_hid_mouse_obj)} },
#endif
#if USBD_SUPPORT_HS_MODE
{ MP_QSTR_high_speed, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
#endif
};
// fetch the current usb mode -> pyb.usb_mode()
if (n_args == 0) {
#if defined(USE_HOST_MODE)
return MP_OBJ_NEW_QSTR(MP_QSTR_host);
#else
uint8_t mode = USBD_GetMode(&usb_device.usbd_cdc_msc_hid_state);
switch (mode & USBD_MODE_IFACE_MASK) {
case USBD_MODE_CDC:
return MP_OBJ_NEW_QSTR(MP_QSTR_VCP);
case USBD_MODE_MSC:
return MP_OBJ_NEW_QSTR(MP_QSTR_MSC);
case USBD_MODE_HID:
return MP_OBJ_NEW_QSTR(MP_QSTR_HID);
case USBD_MODE_CDC_MSC:
return MP_OBJ_NEW_QSTR(MP_QSTR_VCP_plus_MSC);
case USBD_MODE_CDC_HID:
return MP_OBJ_NEW_QSTR(MP_QSTR_VCP_plus_HID);
case USBD_MODE_MSC_HID:
return MP_OBJ_NEW_QSTR(MP_QSTR_MSC_plus_HID);
default:
return mp_const_none;
}
#endif
}
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// record the fact that the usb has been explicitly configured
pyb_usb_flags |= PYB_USB_FLAG_USB_MODE_CALLED;
// check if user wants to disable the USB
if (args[ARG_mode].u_obj == mp_const_none) {
// disable usb
pyb_usb_dev_deinit();
return mp_const_none;
}
// get mode string
const char *mode_str = mp_obj_str_get_str(args[ARG_mode].u_obj);
#if defined(USE_HOST_MODE)
// hardware configured for USB host mode
if (strcmp(mode_str, "host") == 0) {
pyb_usb_host_init();
} else {
goto bad_mode;
}
#else
// hardware configured for USB device mode
// get the VID, PID and USB mode
// note: PID=-1 means select PID based on mode
// note: we support CDC as a synonym for VCP for backward compatibility
uint16_t vid = args[ARG_vid].u_int;
mp_int_t pid = args[ARG_pid].u_int;
uint8_t mode;
if (strcmp(mode_str, "CDC+MSC") == 0 || strcmp(mode_str, "VCP+MSC") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC_MSC;
}
mode = USBD_MODE_CDC_MSC;
} else if (strcmp(mode_str, "VCP+MSC+HID") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC_MSC_HID;
}
mode = USBD_MODE_CDC_MSC_HID;
#if MICROPY_HW_USB_CDC_NUM >= 2
} else if (strcmp(mode_str, "VCP+VCP") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC2;
}
mode = USBD_MODE_CDC2;
} else if (strcmp(mode_str, "VCP+VCP+MSC") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC2_MSC;
}
mode = USBD_MODE_CDC2_MSC;
} else if (strcmp(mode_str, "2xVCP+MSC+HID") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC2_MSC_HID;
}
mode = USBD_MODE_CDC2_MSC_HID;
#endif
#if MICROPY_HW_USB_CDC_NUM >= 3
} else if (strcmp(mode_str, "3xVCP") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC3;
}
mode = USBD_MODE_CDC3;
} else if (strcmp(mode_str, "3xVCP+MSC") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC3_MSC;
}
mode = USBD_MODE_CDC3_MSC;
} else if (strcmp(mode_str, "3xVCP+MSC+HID") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC3_MSC_HID;
}
mode = USBD_MODE_CDC3_MSC_HID;
#endif
} else if (strcmp(mode_str, "CDC+HID") == 0 || strcmp(mode_str, "VCP+HID") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC_HID;
}
mode = USBD_MODE_CDC_HID;
} else if (strcmp(mode_str, "CDC") == 0 || strcmp(mode_str, "VCP") == 0) {
if (pid == -1) {
pid = USBD_PID_CDC;
}
mode = USBD_MODE_CDC;
} else if (strcmp(mode_str, "MSC") == 0) {
if (pid == -1) {
pid = USBD_PID_MSC;
}
mode = USBD_MODE_MSC;
} else {
goto bad_mode;
}
// Get MSC logical units
size_t msc_n = 0;
const void *msc_unit[USBD_MSC_MAX_LUN];
#if MICROPY_HW_USB_MSC
if (mode & USBD_MODE_IFACE_MSC) {
mp_obj_t *items;
mp_obj_get_array(args[ARG_msc].u_obj, &msc_n, &items);
if (msc_n > USBD_MSC_MAX_LUN) {
mp_raise_ValueError("too many logical units");
}
for (size_t i = 0; i < msc_n; ++i) {
const mp_obj_type_t *type = mp_obj_get_type(items[i]);
if (type == &pyb_flash_type
#if MICROPY_HW_ENABLE_SDCARD
|| type == &pyb_sdcard_type
#endif
#if MICROPY_HW_ENABLE_MMCARD
|| type == &pyb_mmcard_type
#endif
) {
msc_unit[i] = type;
} else {
mp_raise_ValueError("unsupported logical unit");
}
}
}
#endif
// get hid info if user selected such a mode
USBD_HID_ModeInfoTypeDef hid_info;
#if MICROPY_HW_USB_HID
if (mode & USBD_MODE_IFACE_HID) {
mp_obj_t *items;
mp_obj_get_array_fixed_n(args[ARG_hid].u_obj, 5, &items);
hid_info.subclass = mp_obj_get_int(items[0]);
hid_info.protocol = mp_obj_get_int(items[1]);
hid_info.max_packet_len = mp_obj_get_int(items[2]);
hid_info.polling_interval = mp_obj_get_int(items[3]);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(items[4], &bufinfo, MP_BUFFER_READ);
hid_info.report_desc = bufinfo.buf;
hid_info.report_desc_len = bufinfo.len;
// need to keep a copy of this so report_desc does not get GC'd
MP_STATE_PORT(pyb_hid_report_desc) = items[4];
}
#endif
#if USBD_SUPPORT_HS_MODE
if (args[ARG_high_speed].u_bool) {
mode |= USBD_MODE_HIGH_SPEED;
}
#endif
// Work out which port/peripheral to use, either user supplied or auto detect
int dev_id = args[ARG_port].u_int;
if (dev_id == -1) {
dev_id = pyb_usb_dev_detect();
}
// init the USB device
if (!pyb_usb_dev_init(dev_id, vid, pid, mode, msc_n, msc_unit, &hid_info)) {
goto bad_mode;
}
#endif
return mp_const_none;
bad_mode:
mp_raise_ValueError("bad USB mode");
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_mode_obj, 0, pyb_usb_mode);
/******************************************************************************/
// MicroPython bindings for USB VCP
/// \moduleref pyb
/// \class USB_VCP - USB virtual comm port
///
/// The USB_VCP class allows creation of an object representing the USB
/// virtual comm port. It can be used to read and write data over USB to
/// the connected host.
typedef struct _pyb_usb_vcp_obj_t {
mp_obj_base_t base;
usbd_cdc_itf_t *cdc_itf;
} pyb_usb_vcp_obj_t;
const pyb_usb_vcp_obj_t pyb_usb_vcp_obj[MICROPY_HW_USB_CDC_NUM] = {
{{&pyb_usb_vcp_type}, &usb_device.usbd_cdc_itf[0]},
#if MICROPY_HW_USB_CDC_NUM >= 2
{{&pyb_usb_vcp_type}, &usb_device.usbd_cdc_itf[1]},
#endif
#if MICROPY_HW_USB_CDC_NUM >= 3
{{&pyb_usb_vcp_type}, &usb_device.usbd_cdc_itf[2]},
#endif
};
STATIC void pyb_usb_vcp_init0(void) {
// Activate USB_VCP(0) on dupterm slot 1 for the REPL
MP_STATE_VM(dupterm_objs[1]) = MP_OBJ_FROM_PTR(&pyb_usb_vcp_obj[0]);
usb_vcp_attach_to_repl(&pyb_usb_vcp_obj[0], true);
}
STATIC void pyb_usb_vcp_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
int id = ((pyb_usb_vcp_obj_t*)MP_OBJ_TO_PTR(self_in))->cdc_itf - &usb_device.usbd_cdc_itf[0];
mp_printf(print, "USB_VCP(%u)", id);
}
void usb_vcp_attach_to_repl(const pyb_usb_vcp_obj_t *self, bool attached) {
self->cdc_itf->attached_to_repl = attached;
if (attached) {
// Default behavior is non-blocking when attached to repl
self->cdc_itf->flow &= ~USBD_CDC_FLOWCONTROL_CTS;
} else {
self->cdc_itf->flow |= USBD_CDC_FLOWCONTROL_CTS;
}
}
/// \classmethod \constructor()
/// Create a new USB_VCP object.
STATIC mp_obj_t pyb_usb_vcp_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 1, false);
// TODO raise exception if USB is not configured for VCP
int id = (n_args == 0) ? 0 : mp_obj_get_int(args[0]);
if (0 <= id && id < MICROPY_HW_USB_CDC_NUM) {
return MP_OBJ_FROM_PTR(&pyb_usb_vcp_obj[id]);
} else {
mp_raise_ValueError(NULL);
}
}
// init(*, flow=-1)
STATIC mp_obj_t pyb_usb_vcp_init(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_flow };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// flow control
if (args[ARG_flow].u_int != -1) {
self->cdc_itf->flow = args[ARG_flow].u_int;
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_init_obj, 1, pyb_usb_vcp_init);
STATIC mp_obj_t pyb_usb_vcp_setinterrupt(mp_obj_t self_in, mp_obj_t int_chr_in) {
mp_hal_set_interrupt_char(mp_obj_get_int(int_chr_in));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_usb_vcp_setinterrupt_obj, pyb_usb_vcp_setinterrupt);
STATIC mp_obj_t pyb_usb_vcp_isconnected(mp_obj_t self_in) {
pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_bool(usbd_cdc_is_connected(self->cdc_itf));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_vcp_isconnected_obj, pyb_usb_vcp_isconnected);
// deprecated in favour of USB_VCP.isconnected
STATIC mp_obj_t pyb_have_cdc(void) {
return pyb_usb_vcp_isconnected(MP_OBJ_FROM_PTR(&pyb_usb_vcp_obj[0]));
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);
/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t pyb_usb_vcp_any(mp_obj_t self_in) {
pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (usbd_cdc_rx_num(self->cdc_itf) > 0) {
return mp_const_true;
} else {
return mp_const_false;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_vcp_any_obj, pyb_usb_vcp_any);
/// \method send(data, *, timeout=5000)
/// Send data over the USB VCP:
///
/// - `data` is the data to send (an integer to send, or a buffer object).
/// - `timeout` is the timeout in milliseconds to wait for the send.
///
/// Return value: number of bytes sent.
STATIC const mp_arg_t pyb_usb_vcp_send_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_USB_VCP_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_usb_vcp_send_args)
STATIC mp_obj_t pyb_usb_vcp_send(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(args[0]);
mp_arg_val_t vals[PYB_USB_VCP_SEND_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_USB_VCP_SEND_NUM_ARGS, pyb_usb_vcp_send_args, vals);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);
// send the data
int ret = usbd_cdc_tx(self->cdc_itf, bufinfo.buf, bufinfo.len, vals[1].u_int);
return mp_obj_new_int(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_send_obj, 1, pyb_usb_vcp_send);
/// \method recv(data, *, timeout=5000)
///
/// Receive data on the bus:
///
/// - `data` can be an integer, which is the number of bytes to receive,
/// or a mutable buffer, which will be filled with received bytes.
/// - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: if `data` is an integer then a new buffer of the bytes received,
/// otherwise the number of bytes read into `data` is returned.
STATIC mp_obj_t pyb_usb_vcp_recv(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(args[0]);
mp_arg_val_t vals[PYB_USB_VCP_SEND_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_USB_VCP_SEND_NUM_ARGS, pyb_usb_vcp_send_args, vals);
// get the buffer to receive into
vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr);
// receive the data
int ret = usbd_cdc_rx(self->cdc_itf, (uint8_t*)vstr.buf, vstr.len, vals[1].u_int);
// return the received data
if (o_ret != MP_OBJ_NULL) {
return mp_obj_new_int(ret); // number of bytes read into given buffer
} else {
vstr.len = ret; // set actual number of bytes read
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); // create a new buffer
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_recv_obj, 1, pyb_usb_vcp_recv);
mp_obj_t pyb_usb_vcp___exit__(size_t n_args, const mp_obj_t *args) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_usb_vcp___exit___obj, 4, 4, pyb_usb_vcp___exit__);
STATIC const mp_rom_map_elem_t pyb_usb_vcp_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_usb_vcp_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_setinterrupt), MP_ROM_PTR(&pyb_usb_vcp_setinterrupt_obj) },
{ MP_ROM_QSTR(MP_QSTR_isconnected), MP_ROM_PTR(&pyb_usb_vcp_isconnected_obj) },
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_usb_vcp_any_obj) },
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_usb_vcp_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_usb_vcp_recv_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)},
{ MP_ROM_QSTR(MP_QSTR_readlines), MP_ROM_PTR(&mp_stream_unbuffered_readlines_obj)},
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_close), MP_ROM_PTR(&mp_identity_obj) },
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&mp_identity_obj) },
{ MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&mp_identity_obj) },
{ MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&pyb_usb_vcp___exit___obj) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(USBD_CDC_FLOWCONTROL_RTS) },
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(USBD_CDC_FLOWCONTROL_CTS) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_usb_vcp_locals_dict, pyb_usb_vcp_locals_dict_table);
STATIC mp_uint_t pyb_usb_vcp_read(mp_obj_t self_in, void *buf, mp_uint_t size, int *errcode) {
pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in);
int ret = usbd_cdc_rx(self->cdc_itf, (byte*)buf, size, 0);
if (ret == 0) {
// return EAGAIN error to indicate non-blocking
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
return ret;
}
STATIC mp_uint_t pyb_usb_vcp_write(mp_obj_t self_in, const void *buf, mp_uint_t size, int *errcode) {
pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in);
int ret = usbd_cdc_tx_flow(self->cdc_itf, (const byte*)buf, size);
if (ret == 0) {
// return EAGAIN error to indicate non-blocking
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
return ret;
}
STATIC mp_uint_t pyb_usb_vcp_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
mp_uint_t ret;
pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD) && usbd_cdc_rx_num(self->cdc_itf) > 0) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && usbd_cdc_tx_half_empty(self->cdc_itf)) {
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t pyb_usb_vcp_stream_p = {
.read = pyb_usb_vcp_read,
.write = pyb_usb_vcp_write,
.ioctl = pyb_usb_vcp_ioctl,
};
const mp_obj_type_t pyb_usb_vcp_type = {
{ &mp_type_type },
.name = MP_QSTR_USB_VCP,
.print = pyb_usb_vcp_print,
.make_new = pyb_usb_vcp_make_new,
.getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter,
.protocol = &pyb_usb_vcp_stream_p,
.locals_dict = (mp_obj_dict_t*)&pyb_usb_vcp_locals_dict,
};
/******************************************************************************/
// MicroPython bindings for USB HID
#if MICROPY_HW_USB_HID
typedef struct _pyb_usb_hid_obj_t {
mp_obj_base_t base;
usb_device_t *usb_dev;
} pyb_usb_hid_obj_t;
STATIC const pyb_usb_hid_obj_t pyb_usb_hid_obj = {{&pyb_usb_hid_type}, &usb_device};
STATIC mp_obj_t pyb_usb_hid_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// TODO raise exception if USB is not configured for HID
// return the USB HID object
return MP_OBJ_FROM_PTR(&pyb_usb_hid_obj);
}
/// \method recv(data, *, timeout=5000)
///
/// Receive data on the bus:
///
/// - `data` can be an integer, which is the number of bytes to receive,
/// or a mutable buffer, which will be filled with received bytes.
/// - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: if `data` is an integer then a new buffer of the bytes received,
/// otherwise the number of bytes read into `data` is returned.
STATIC mp_obj_t pyb_usb_hid_recv(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_usb_hid_obj_t *self = MP_OBJ_TO_PTR(args[0]);
mp_arg_val_t vals[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, vals);
// get the buffer to receive into
vstr_t vstr;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr);
// receive the data
int ret = usbd_hid_rx(&self->usb_dev->usbd_hid_itf, vstr.len, (uint8_t*)vstr.buf, vals[1].u_int);
if (ret < 0) {
// error, just return 0/empty bytes
ret = 0;
}
// return the received data
if (o_ret != MP_OBJ_NULL) {
return mp_obj_new_int(ret); // number of bytes read into given buffer
} else {
vstr.len = ret; // set actual number of bytes read
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); // create a new buffer
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_hid_recv_obj, 1, pyb_usb_hid_recv);
STATIC mp_obj_t pyb_usb_hid_send(mp_obj_t self_in, mp_obj_t report_in) {
pyb_usb_hid_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_buffer_info_t bufinfo;
byte temp_buf[8];
// get the buffer to send from
// we accept either a byte array, or a tuple/list of integers
if (!mp_get_buffer(report_in, &bufinfo, MP_BUFFER_READ)) {
mp_obj_t *items;
mp_obj_get_array(report_in, &bufinfo.len, &items);
if (bufinfo.len > sizeof(temp_buf)) {
mp_raise_ValueError("tuple/list too large for HID report; use bytearray instead");
}
for (int i = 0; i < bufinfo.len; i++) {
temp_buf[i] = mp_obj_get_int(items[i]);
}
bufinfo.buf = temp_buf;
}
// send the data
if (USBD_OK == USBD_HID_SendReport(&self->usb_dev->usbd_hid_itf.base, bufinfo.buf, bufinfo.len)) {
return mp_obj_new_int(bufinfo.len);
} else {
return mp_obj_new_int(0);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_usb_hid_send_obj, pyb_usb_hid_send);
// deprecated in favour of USB_HID.send
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
return pyb_usb_hid_send(MP_OBJ_FROM_PTR(&pyb_usb_hid_obj), arg);
}
MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
STATIC const mp_rom_map_elem_t pyb_usb_hid_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_usb_hid_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_usb_hid_recv_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_usb_hid_locals_dict, pyb_usb_hid_locals_dict_table);
STATIC mp_uint_t pyb_usb_hid_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
pyb_usb_hid_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if ((flags & MP_STREAM_POLL_RD) && usbd_hid_rx_num(&self->usb_dev->usbd_hid_itf) > 0) {
ret |= MP_STREAM_POLL_RD;
}
if ((flags & MP_STREAM_POLL_WR) && USBD_HID_CanSendReport(&self->usb_dev->usbd_hid_itf.base)) {
ret |= MP_STREAM_POLL_WR;
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t pyb_usb_hid_stream_p = {
.ioctl = pyb_usb_hid_ioctl,
};
const mp_obj_type_t pyb_usb_hid_type = {
{ &mp_type_type },
.name = MP_QSTR_USB_HID,
.make_new = pyb_usb_hid_make_new,
.protocol = &pyb_usb_hid_stream_p,
.locals_dict = (mp_obj_dict_t*)&pyb_usb_hid_locals_dict,
};
#endif // MICROPY_HW_USB_HID
/******************************************************************************/
// code for experimental USB OTG support
#ifdef USE_HOST_MODE
#include "led.h"
#include "usbh_core.h"
#include "usbh_usr.h"
#include "usbh_hid_core.h"
#include "usbh_hid_keybd.h"
#include "usbh_hid_mouse.h"
__ALIGN_BEGIN USBH_HOST USB_Host __ALIGN_END ;
static int host_is_enabled = 0;
void pyb_usb_host_init(void) {
if (!host_is_enabled) {
// only init USBH once in the device's power-lifetime
/* Init Host Library */
USBH_Init(&USB_OTG_Core, USB_OTG_FS_CORE_ID, &USB_Host, &HID_cb, &USR_Callbacks);
}
host_is_enabled = 1;
}
void pyb_usb_host_process(void) {
USBH_Process(&USB_OTG_Core, &USB_Host);
}
uint8_t usb_keyboard_key = 0;
// TODO this is an ugly hack to get key presses
uint pyb_usb_host_get_keyboard(void) {
uint key = usb_keyboard_key;
usb_keyboard_key = 0;
return key;
}
void USR_MOUSE_Init(void) {
led_state(4, 1);
USB_OTG_BSP_mDelay(100);
led_state(4, 0);
}
void USR_MOUSE_ProcessData(HID_MOUSE_Data_TypeDef *data) {
led_state(4, 1);
USB_OTG_BSP_mDelay(50);
led_state(4, 0);
}
void USR_KEYBRD_Init(void) {
led_state(4, 1);
USB_OTG_BSP_mDelay(100);
led_state(4, 0);
}
void USR_KEYBRD_ProcessData(uint8_t pbuf) {
led_state(4, 1);
USB_OTG_BSP_mDelay(50);
led_state(4, 0);
usb_keyboard_key = pbuf;
}
#endif // USE_HOST_MODE
#endif // MICROPY_HW_ENABLE_USB