c737cde947
Anywhere a module is mentioned, use its "non-u" name for consistency. The "import module" vs "import umodule" is something of a FAQ, and this commit intends to help clear that up. As a first approximation MicroPython is Python, and so imports should work the same as Python and use the same name, to a first approximation. The u-version of a module is a detail that can be learned later on, when the user wants to understand more and have finer control over importing. Existing Python code should just work, as much as it is possible to do that within the constraints of embedded systems, and the MicroPython documentation should match the idiomatic way to write Python code. With universal weak links for modules (via MICROPY_MODULE_WEAK_LINKS) users can consistently use "import foo" across all ports (with the exception of the minimal ports). And the ability to override/extend via "foo.py" continues to work well. Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
251 lines
12 KiB
ReStructuredText
251 lines
12 KiB
ReStructuredText
:mod:`time` -- time related functions
|
|
=====================================
|
|
|
|
.. module:: time
|
|
:synopsis: time related functions
|
|
|
|
|see_cpython_module| :mod:`python:time`.
|
|
|
|
The ``time`` module provides functions for getting the current time and date,
|
|
measuring time intervals, and for delays.
|
|
|
|
**Time Epoch**: Unix port uses standard for POSIX systems epoch of
|
|
1970-01-01 00:00:00 UTC. However, embedded ports use epoch of
|
|
2000-01-01 00:00:00 UTC.
|
|
|
|
**Maintaining actual calendar date/time**: This requires a
|
|
Real Time Clock (RTC). On systems with underlying OS (including some
|
|
RTOS), an RTC may be implicit. Setting and maintaining actual calendar
|
|
time is responsibility of OS/RTOS and is done outside of MicroPython,
|
|
it just uses OS API to query date/time. On baremetal ports however
|
|
system time depends on ``machine.RTC()`` object. The current calendar time
|
|
may be set using ``machine.RTC().datetime(tuple)`` function, and maintained
|
|
by following means:
|
|
|
|
* By a backup battery (which may be an additional, optional component for
|
|
a particular board).
|
|
* Using networked time protocol (requires setup by a port/user).
|
|
* Set manually by a user on each power-up (many boards then maintain
|
|
RTC time across hard resets, though some may require setting it again
|
|
in such case).
|
|
|
|
If actual calendar time is not maintained with a system/MicroPython RTC,
|
|
functions below which require reference to current absolute time may
|
|
behave not as expected.
|
|
|
|
Functions
|
|
---------
|
|
|
|
.. function:: gmtime([secs])
|
|
localtime([secs])
|
|
|
|
Convert the time *secs* expressed in seconds since the Epoch (see above) into an
|
|
8-tuple which contains: ``(year, month, mday, hour, minute, second, weekday, yearday)``
|
|
If *secs* is not provided or None, then the current time from the RTC is used.
|
|
|
|
The `gmtime()` function returns a date-time tuple in UTC, and `localtime()` returns a
|
|
date-time tuple in local time.
|
|
|
|
The format of the entries in the 8-tuple are:
|
|
|
|
* year includes the century (for example 2014).
|
|
* month is 1-12
|
|
* mday is 1-31
|
|
* hour is 0-23
|
|
* minute is 0-59
|
|
* second is 0-59
|
|
* weekday is 0-6 for Mon-Sun
|
|
* yearday is 1-366
|
|
|
|
.. function:: mktime()
|
|
|
|
This is inverse function of localtime. It's argument is a full 8-tuple
|
|
which expresses a time as per localtime. It returns an integer which is
|
|
the number of seconds since Jan 1, 2000.
|
|
|
|
.. function:: sleep(seconds)
|
|
|
|
Sleep for the given number of seconds. Some boards may accept *seconds* as a
|
|
floating-point number to sleep for a fractional number of seconds. Note that
|
|
other boards may not accept a floating-point argument, for compatibility with
|
|
them use `sleep_ms()` and `sleep_us()` functions.
|
|
|
|
.. function:: sleep_ms(ms)
|
|
|
|
Delay for given number of milliseconds, should be positive or 0.
|
|
|
|
This function will delay for at least the given number of milliseconds, but
|
|
may take longer than that if other processing must take place, for example
|
|
interrupt handlers or other threads. Passing in 0 for *ms* will still allow
|
|
this other processing to occur. Use `sleep_us()` for more precise delays.
|
|
|
|
.. function:: sleep_us(us)
|
|
|
|
Delay for given number of microseconds, should be positive or 0.
|
|
|
|
This function attempts to provide an accurate delay of at least *us*
|
|
microseconds, but it may take longer if the system has other higher priority
|
|
processing to perform.
|
|
|
|
.. function:: ticks_ms()
|
|
|
|
Returns an increasing millisecond counter with an arbitrary reference point, that
|
|
wraps around after some value.
|
|
|
|
The wrap-around value is not explicitly exposed, but we will
|
|
refer to it as *TICKS_MAX* to simplify discussion. Period of the values is
|
|
*TICKS_PERIOD = TICKS_MAX + 1*. *TICKS_PERIOD* is guaranteed to be a power of
|
|
two, but otherwise may differ from port to port. The same period value is used
|
|
for all of `ticks_ms()`, `ticks_us()`, `ticks_cpu()` functions (for
|
|
simplicity). Thus, these functions will return a value in range [*0* ..
|
|
*TICKS_MAX*], inclusive, total *TICKS_PERIOD* values. Note that only
|
|
non-negative values are used. For the most part, you should treat values returned
|
|
by these functions as opaque. The only operations available for them are
|
|
`ticks_diff()` and `ticks_add()` functions described below.
|
|
|
|
Note: Performing standard mathematical operations (+, -) or relational
|
|
operators (<, <=, >, >=) directly on these value will lead to invalid
|
|
result. Performing mathematical operations and then passing their results
|
|
as arguments to `ticks_diff()` or `ticks_add()` will also lead to
|
|
invalid results from the latter functions.
|
|
|
|
.. function:: ticks_us()
|
|
|
|
Just like `ticks_ms()` above, but in microseconds.
|
|
|
|
.. function:: ticks_cpu()
|
|
|
|
Similar to `ticks_ms()` and `ticks_us()`, but with the highest possible resolution
|
|
in the system. This is usually CPU clocks, and that's why the function is named that
|
|
way. But it doesn't have to be a CPU clock, some other timing source available in a
|
|
system (e.g. high-resolution timer) can be used instead. The exact timing unit
|
|
(resolution) of this function is not specified on ``time`` module level, but
|
|
documentation for a specific port may provide more specific information. This
|
|
function is intended for very fine benchmarking or very tight real-time loops.
|
|
Avoid using it in portable code.
|
|
|
|
Availability: Not every port implements this function.
|
|
|
|
|
|
.. function:: ticks_add(ticks, delta)
|
|
|
|
Offset ticks value by a given number, which can be either positive or negative.
|
|
Given a *ticks* value, this function allows to calculate ticks value *delta*
|
|
ticks before or after it, following modular-arithmetic definition of tick values
|
|
(see `ticks_ms()` above). *ticks* parameter must be a direct result of call
|
|
to `ticks_ms()`, `ticks_us()`, or `ticks_cpu()` functions (or from previous
|
|
call to `ticks_add()`). However, *delta* can be an arbitrary integer number
|
|
or numeric expression. `ticks_add()` is useful for calculating deadlines for
|
|
events/tasks. (Note: you must use `ticks_diff()` function to work with
|
|
deadlines.)
|
|
|
|
Examples::
|
|
|
|
# Find out what ticks value there was 100ms ago
|
|
print(ticks_add(time.ticks_ms(), -100))
|
|
|
|
# Calculate deadline for operation and test for it
|
|
deadline = ticks_add(time.ticks_ms(), 200)
|
|
while ticks_diff(deadline, time.ticks_ms()) > 0:
|
|
do_a_little_of_something()
|
|
|
|
# Find out TICKS_MAX used by this port
|
|
print(ticks_add(0, -1))
|
|
|
|
|
|
.. function:: ticks_diff(ticks1, ticks2)
|
|
|
|
Measure ticks difference between values returned from `ticks_ms()`, `ticks_us()`,
|
|
or `ticks_cpu()` functions, as a signed value which may wrap around.
|
|
|
|
The argument order is the same as for subtraction
|
|
operator, ``ticks_diff(ticks1, ticks2)`` has the same meaning as ``ticks1 - ticks2``.
|
|
However, values returned by `ticks_ms()`, etc. functions may wrap around, so
|
|
directly using subtraction on them will produce incorrect result. That is why
|
|
`ticks_diff()` is needed, it implements modular (or more specifically, ring)
|
|
arithmetics to produce correct result even for wrap-around values (as long as they not
|
|
too distant inbetween, see below). The function returns **signed** value in the range
|
|
[*-TICKS_PERIOD/2* .. *TICKS_PERIOD/2-1*] (that's a typical range definition for
|
|
two's-complement signed binary integers). If the result is negative, it means that
|
|
*ticks1* occurred earlier in time than *ticks2*. Otherwise, it means that
|
|
*ticks1* occurred after *ticks2*. This holds **only** if *ticks1* and *ticks2*
|
|
are apart from each other for no more than *TICKS_PERIOD/2-1* ticks. If that does
|
|
not hold, incorrect result will be returned. Specifically, if two tick values are
|
|
apart for *TICKS_PERIOD/2-1* ticks, that value will be returned by the function.
|
|
However, if *TICKS_PERIOD/2* of real-time ticks has passed between them, the
|
|
function will return *-TICKS_PERIOD/2* instead, i.e. result value will wrap around
|
|
to the negative range of possible values.
|
|
|
|
Informal rationale of the constraints above: Suppose you are locked in a room with no
|
|
means to monitor passing of time except a standard 12-notch clock. Then if you look at
|
|
dial-plate now, and don't look again for another 13 hours (e.g., if you fall for a
|
|
long sleep), then once you finally look again, it may seem to you that only 1 hour
|
|
has passed. To avoid this mistake, just look at the clock regularly. Your application
|
|
should do the same. "Too long sleep" metaphor also maps directly to application
|
|
behaviour: don't let your application run any single task for too long. Run tasks
|
|
in steps, and do time-keeping inbetween.
|
|
|
|
`ticks_diff()` is designed to accommodate various usage patterns, among them:
|
|
|
|
* Polling with timeout. In this case, the order of events is known, and you will deal
|
|
only with positive results of `ticks_diff()`::
|
|
|
|
# Wait for GPIO pin to be asserted, but at most 500us
|
|
start = time.ticks_us()
|
|
while pin.value() == 0:
|
|
if time.ticks_diff(time.ticks_us(), start) > 500:
|
|
raise TimeoutError
|
|
|
|
* Scheduling events. In this case, `ticks_diff()` result may be negative
|
|
if an event is overdue::
|
|
|
|
# This code snippet is not optimized
|
|
now = time.ticks_ms()
|
|
scheduled_time = task.scheduled_time()
|
|
if ticks_diff(scheduled_time, now) > 0:
|
|
print("Too early, let's nap")
|
|
sleep_ms(ticks_diff(scheduled_time, now))
|
|
task.run()
|
|
elif ticks_diff(scheduled_time, now) == 0:
|
|
print("Right at time!")
|
|
task.run()
|
|
elif ticks_diff(scheduled_time, now) < 0:
|
|
print("Oops, running late, tell task to run faster!")
|
|
task.run(run_faster=true)
|
|
|
|
Note: Do not pass `time()` values to `ticks_diff()`, you should use
|
|
normal mathematical operations on them. But note that `time()` may (and will)
|
|
also overflow. This is known as https://en.wikipedia.org/wiki/Year_2038_problem .
|
|
|
|
|
|
.. function:: time()
|
|
|
|
Returns the number of seconds, as an integer, since the Epoch, assuming that
|
|
underlying RTC is set and maintained as described above. If an RTC is not set, this
|
|
function returns number of seconds since a port-specific reference point in time (for
|
|
embedded boards without a battery-backed RTC, usually since power up or reset). If you
|
|
want to develop portable MicroPython application, you should not rely on this function
|
|
to provide higher than second precision. If you need higher precision, absolute
|
|
timestamps, use `time_ns()`. If relative times are acceptable then use the
|
|
`ticks_ms()` and `ticks_us()` functions. If you need calendar time, `gmtime()` or
|
|
`localtime()` without an argument is a better choice.
|
|
|
|
.. admonition:: Difference to CPython
|
|
:class: attention
|
|
|
|
In CPython, this function returns number of
|
|
seconds since Unix epoch, 1970-01-01 00:00 UTC, as a floating-point,
|
|
usually having microsecond precision. With MicroPython, only Unix port
|
|
uses the same Epoch, and if floating-point precision allows,
|
|
returns sub-second precision. Embedded hardware usually doesn't have
|
|
floating-point precision to represent both long time ranges and subsecond
|
|
precision, so they use integer value with second precision. Some embedded
|
|
hardware also lacks battery-powered RTC, so returns number of seconds
|
|
since last power-up or from other relative, hardware-specific point
|
|
(e.g. reset).
|
|
|
|
.. function:: time_ns()
|
|
|
|
Similar to `time()` but returns nanoseconds since the Epoch, as an integer (usually
|
|
a big integer, so will allocate on the heap).
|