3bef7bd782
A native function allocates space on its C stack for mp_code_state_t, followed by its Python stack, then its locals. This patch makes sure that the native function actually starts at the start of its Python stack, rather than at the start of mp_code_state_t (which didn't lead to any issues so far because the mp_code_state_t is unused after the native function sets itself up).
2291 lines
93 KiB
C
2291 lines
93 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
// Essentially normal Python has 1 type: Python objects
|
|
// Viper has more than 1 type, and is just a more complicated (a superset of) Python.
|
|
// If you declare everything in Viper as a Python object (ie omit type decls) then
|
|
// it should in principle be exactly the same as Python native.
|
|
// Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc.
|
|
// In practice we won't have a VM but rather do this in asm which is actually very minimal.
|
|
|
|
// Because it breaks strict Python equivalence it should be a completely separate
|
|
// decorator. It breaks equivalence because overflow on integers wraps around.
|
|
// It shouldn't break equivalence if you don't use the new types, but since the
|
|
// type decls might be used in normal Python for other reasons, it's probably safest,
|
|
// cleanest and clearest to make it a separate decorator.
|
|
|
|
// Actually, it does break equivalence because integers default to native integers,
|
|
// not Python objects.
|
|
|
|
// for x in l[0:8]: can be compiled into a native loop if l has pointer type
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "py/emit.h"
|
|
#include "py/bc.h"
|
|
|
|
#if MICROPY_DEBUG_VERBOSE // print debugging info
|
|
#define DEBUG_PRINT (1)
|
|
#define DEBUG_printf DEBUG_printf
|
|
#else // don't print debugging info
|
|
#define DEBUG_printf(...) (void)0
|
|
#endif
|
|
|
|
// wrapper around everything in this file
|
|
#if N_X64 || N_X86 || N_THUMB || N_ARM || N_XTENSA
|
|
|
|
// define additional generic helper macros
|
|
#define ASM_MOV_LOCAL_IMM_VIA(as, local_num, imm, reg_temp) \
|
|
do { \
|
|
ASM_MOV_REG_IMM((as), (reg_temp), (imm)); \
|
|
ASM_MOV_LOCAL_REG((as), (local_num), (reg_temp)); \
|
|
} while (false)
|
|
|
|
#define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \
|
|
*emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
typedef enum {
|
|
STACK_VALUE,
|
|
STACK_REG,
|
|
STACK_IMM,
|
|
} stack_info_kind_t;
|
|
|
|
// these enums must be distinct and the bottom 4 bits
|
|
// must correspond to the correct MP_NATIVE_TYPE_xxx value
|
|
typedef enum {
|
|
VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ,
|
|
VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL,
|
|
VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT,
|
|
VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT,
|
|
VTYPE_PTR = 0x00 | MP_NATIVE_TYPE_PTR,
|
|
VTYPE_PTR8 = 0x00 | MP_NATIVE_TYPE_PTR8,
|
|
VTYPE_PTR16 = 0x00 | MP_NATIVE_TYPE_PTR16,
|
|
VTYPE_PTR32 = 0x00 | MP_NATIVE_TYPE_PTR32,
|
|
|
|
VTYPE_PTR_NONE = 0x50 | MP_NATIVE_TYPE_PTR,
|
|
|
|
VTYPE_UNBOUND = 0x60 | MP_NATIVE_TYPE_OBJ,
|
|
VTYPE_BUILTIN_CAST = 0x70 | MP_NATIVE_TYPE_OBJ,
|
|
} vtype_kind_t;
|
|
|
|
STATIC qstr vtype_to_qstr(vtype_kind_t vtype) {
|
|
switch (vtype) {
|
|
case VTYPE_PYOBJ: return MP_QSTR_object;
|
|
case VTYPE_BOOL: return MP_QSTR_bool;
|
|
case VTYPE_INT: return MP_QSTR_int;
|
|
case VTYPE_UINT: return MP_QSTR_uint;
|
|
case VTYPE_PTR: return MP_QSTR_ptr;
|
|
case VTYPE_PTR8: return MP_QSTR_ptr8;
|
|
case VTYPE_PTR16: return MP_QSTR_ptr16;
|
|
case VTYPE_PTR32: return MP_QSTR_ptr32;
|
|
case VTYPE_PTR_NONE: default: return MP_QSTR_None;
|
|
}
|
|
}
|
|
|
|
typedef struct _stack_info_t {
|
|
vtype_kind_t vtype;
|
|
stack_info_kind_t kind;
|
|
union {
|
|
int u_reg;
|
|
mp_int_t u_imm;
|
|
} data;
|
|
} stack_info_t;
|
|
|
|
struct _emit_t {
|
|
mp_obj_t *error_slot;
|
|
int pass;
|
|
|
|
bool do_viper_types;
|
|
|
|
vtype_kind_t return_vtype;
|
|
|
|
mp_uint_t local_vtype_alloc;
|
|
vtype_kind_t *local_vtype;
|
|
|
|
mp_uint_t stack_info_alloc;
|
|
stack_info_t *stack_info;
|
|
vtype_kind_t saved_stack_vtype;
|
|
|
|
int prelude_offset;
|
|
int const_table_offset;
|
|
int n_state;
|
|
int stack_start;
|
|
int stack_size;
|
|
|
|
bool last_emit_was_return_value;
|
|
|
|
scope_t *scope;
|
|
|
|
ASM_T *as;
|
|
};
|
|
|
|
emit_t *EXPORT_FUN(new)(mp_obj_t *error_slot, mp_uint_t max_num_labels) {
|
|
emit_t *emit = m_new0(emit_t, 1);
|
|
emit->error_slot = error_slot;
|
|
emit->as = m_new0(ASM_T, 1);
|
|
mp_asm_base_init(&emit->as->base, max_num_labels);
|
|
return emit;
|
|
}
|
|
|
|
void EXPORT_FUN(free)(emit_t *emit) {
|
|
mp_asm_base_deinit(&emit->as->base, false);
|
|
m_del_obj(ASM_T, emit->as);
|
|
m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc);
|
|
m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc);
|
|
m_del_obj(emit_t, emit);
|
|
}
|
|
|
|
STATIC void emit_native_set_native_type(emit_t *emit, mp_uint_t op, mp_uint_t arg1, qstr arg2) {
|
|
switch (op) {
|
|
case MP_EMIT_NATIVE_TYPE_ENABLE:
|
|
emit->do_viper_types = arg1;
|
|
break;
|
|
|
|
default: {
|
|
vtype_kind_t type;
|
|
switch (arg2) {
|
|
case MP_QSTR_object: type = VTYPE_PYOBJ; break;
|
|
case MP_QSTR_bool: type = VTYPE_BOOL; break;
|
|
case MP_QSTR_int: type = VTYPE_INT; break;
|
|
case MP_QSTR_uint: type = VTYPE_UINT; break;
|
|
case MP_QSTR_ptr: type = VTYPE_PTR; break;
|
|
case MP_QSTR_ptr8: type = VTYPE_PTR8; break;
|
|
case MP_QSTR_ptr16: type = VTYPE_PTR16; break;
|
|
case MP_QSTR_ptr32: type = VTYPE_PTR32; break;
|
|
default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "unknown type '%q'", arg2); return;
|
|
}
|
|
if (op == MP_EMIT_NATIVE_TYPE_RETURN) {
|
|
emit->return_vtype = type;
|
|
} else {
|
|
assert(arg1 < emit->local_vtype_alloc);
|
|
emit->local_vtype[arg1] = type;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest);
|
|
STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg);
|
|
STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num);
|
|
STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num);
|
|
|
|
#define STATE_START (sizeof(mp_code_state_t) / sizeof(mp_uint_t))
|
|
|
|
STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
|
|
DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope);
|
|
|
|
emit->pass = pass;
|
|
emit->stack_start = 0;
|
|
emit->stack_size = 0;
|
|
emit->last_emit_was_return_value = false;
|
|
emit->scope = scope;
|
|
|
|
// allocate memory for keeping track of the types of locals
|
|
if (emit->local_vtype_alloc < scope->num_locals) {
|
|
emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals);
|
|
emit->local_vtype_alloc = scope->num_locals;
|
|
}
|
|
|
|
// allocate memory for keeping track of the objects on the stack
|
|
// XXX don't know stack size on entry, and it should be maximum over all scopes
|
|
// XXX this is such a big hack and really needs to be fixed
|
|
if (emit->stack_info == NULL) {
|
|
emit->stack_info_alloc = scope->stack_size + 200;
|
|
emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc);
|
|
}
|
|
|
|
// set default type for return
|
|
emit->return_vtype = VTYPE_PYOBJ;
|
|
|
|
// set default type for arguments
|
|
mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args;
|
|
if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
|
|
num_args += 1;
|
|
}
|
|
if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) {
|
|
num_args += 1;
|
|
}
|
|
for (mp_uint_t i = 0; i < num_args; i++) {
|
|
emit->local_vtype[i] = VTYPE_PYOBJ;
|
|
}
|
|
|
|
// local variables begin unbound, and have unknown type
|
|
for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) {
|
|
emit->local_vtype[i] = VTYPE_UNBOUND;
|
|
}
|
|
|
|
// values on stack begin unbound
|
|
for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) {
|
|
emit->stack_info[i].kind = STACK_VALUE;
|
|
emit->stack_info[i].vtype = VTYPE_UNBOUND;
|
|
}
|
|
|
|
mp_asm_base_start_pass(&emit->as->base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE);
|
|
|
|
// generate code for entry to function
|
|
|
|
if (emit->do_viper_types) {
|
|
|
|
// right now we have a restriction of maximum of 4 arguments
|
|
if (scope->num_pos_args >= 5) {
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "Viper functions don't currently support more than 4 arguments");
|
|
return;
|
|
}
|
|
|
|
// entry to function
|
|
int num_locals = 0;
|
|
if (pass > MP_PASS_SCOPE) {
|
|
num_locals = scope->num_locals - REG_LOCAL_NUM;
|
|
if (num_locals < 0) {
|
|
num_locals = 0;
|
|
}
|
|
emit->stack_start = num_locals;
|
|
num_locals += scope->stack_size;
|
|
}
|
|
ASM_ENTRY(emit->as, num_locals);
|
|
|
|
// TODO don't load r7 if we don't need it
|
|
#if N_THUMB
|
|
asm_thumb_mov_reg_i32(emit->as, ASM_THUMB_REG_R7, (mp_uint_t)mp_fun_table);
|
|
#elif N_ARM
|
|
asm_arm_mov_reg_i32(emit->as, ASM_ARM_REG_R7, (mp_uint_t)mp_fun_table);
|
|
#endif
|
|
|
|
#if N_X86
|
|
for (int i = 0; i < scope->num_pos_args; i++) {
|
|
if (i == 0) {
|
|
asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_1);
|
|
} else if (i == 1) {
|
|
asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_2);
|
|
} else if (i == 2) {
|
|
asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_3);
|
|
} else {
|
|
asm_x86_mov_arg_to_r32(emit->as, i, REG_TEMP0);
|
|
asm_x86_mov_r32_to_local(emit->as, REG_TEMP0, i - REG_LOCAL_NUM);
|
|
}
|
|
}
|
|
#else
|
|
for (int i = 0; i < scope->num_pos_args; i++) {
|
|
if (i == 0) {
|
|
ASM_MOV_REG_REG(emit->as, REG_LOCAL_1, REG_ARG_1);
|
|
} else if (i == 1) {
|
|
ASM_MOV_REG_REG(emit->as, REG_LOCAL_2, REG_ARG_2);
|
|
} else if (i == 2) {
|
|
ASM_MOV_REG_REG(emit->as, REG_LOCAL_3, REG_ARG_3);
|
|
} else {
|
|
assert(i == 3); // should be true; max 4 args is checked above
|
|
ASM_MOV_LOCAL_REG(emit->as, i - REG_LOCAL_NUM, REG_ARG_4);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
} else {
|
|
// work out size of state (locals plus stack)
|
|
emit->n_state = scope->num_locals + scope->stack_size;
|
|
|
|
// the locals and stack start after the code_state structure
|
|
emit->stack_start = STATE_START;
|
|
|
|
// allocate space on C-stack for code_state structure, which includes state
|
|
ASM_ENTRY(emit->as, STATE_START + emit->n_state);
|
|
|
|
// TODO don't load r7 if we don't need it
|
|
#if N_THUMB
|
|
asm_thumb_mov_reg_i32(emit->as, ASM_THUMB_REG_R7, (mp_uint_t)mp_fun_table);
|
|
#elif N_ARM
|
|
asm_arm_mov_reg_i32(emit->as, ASM_ARM_REG_R7, (mp_uint_t)mp_fun_table);
|
|
#endif
|
|
|
|
// prepare incoming arguments for call to mp_setup_code_state
|
|
|
|
#if N_X86
|
|
asm_x86_mov_arg_to_r32(emit->as, 0, REG_ARG_1);
|
|
asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_2);
|
|
asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_3);
|
|
asm_x86_mov_arg_to_r32(emit->as, 3, REG_ARG_4);
|
|
#endif
|
|
|
|
// set code_state.fun_bc
|
|
ASM_MOV_LOCAL_REG(emit->as, offsetof(mp_code_state_t, fun_bc) / sizeof(uintptr_t), REG_ARG_1);
|
|
|
|
// set code_state.ip (offset from start of this function to prelude info)
|
|
// XXX this encoding may change size
|
|
ASM_MOV_LOCAL_IMM_VIA(emit->as, offsetof(mp_code_state_t, ip) / sizeof(uintptr_t), emit->prelude_offset, REG_ARG_1);
|
|
|
|
// put address of code_state into first arg
|
|
ASM_MOV_REG_LOCAL_ADDR(emit->as, REG_ARG_1, 0);
|
|
|
|
// call mp_setup_code_state to prepare code_state structure
|
|
#if N_THUMB
|
|
asm_thumb_bl_ind(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4);
|
|
#elif N_ARM
|
|
asm_arm_bl_ind(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE, ASM_ARM_REG_R4);
|
|
#else
|
|
ASM_CALL_IND(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE);
|
|
#endif
|
|
|
|
// cache some locals in registers
|
|
if (scope->num_locals > 0) {
|
|
ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_1, STATE_START + emit->n_state - 1 - 0);
|
|
if (scope->num_locals > 1) {
|
|
ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_2, STATE_START + emit->n_state - 1 - 1);
|
|
if (scope->num_locals > 2) {
|
|
ASM_MOV_REG_LOCAL(emit->as, REG_LOCAL_3, STATE_START + emit->n_state - 1 - 2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// set the type of closed over variables
|
|
for (mp_uint_t i = 0; i < scope->id_info_len; i++) {
|
|
id_info_t *id = &scope->id_info[i];
|
|
if (id->kind == ID_INFO_KIND_CELL) {
|
|
emit->local_vtype[id->local_num] = VTYPE_PYOBJ;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
STATIC void emit_native_end_pass(emit_t *emit) {
|
|
if (!emit->last_emit_was_return_value) {
|
|
ASM_EXIT(emit->as);
|
|
}
|
|
|
|
if (!emit->do_viper_types) {
|
|
emit->prelude_offset = mp_asm_base_get_code_pos(&emit->as->base);
|
|
mp_asm_base_data(&emit->as->base, 1, 0x80 | ((emit->n_state >> 7) & 0x7f));
|
|
mp_asm_base_data(&emit->as->base, 1, emit->n_state & 0x7f);
|
|
mp_asm_base_data(&emit->as->base, 1, 0); // n_exc_stack
|
|
mp_asm_base_data(&emit->as->base, 1, emit->scope->scope_flags);
|
|
mp_asm_base_data(&emit->as->base, 1, emit->scope->num_pos_args);
|
|
mp_asm_base_data(&emit->as->base, 1, emit->scope->num_kwonly_args);
|
|
mp_asm_base_data(&emit->as->base, 1, emit->scope->num_def_pos_args);
|
|
|
|
// write code info
|
|
#if MICROPY_PERSISTENT_CODE
|
|
mp_asm_base_data(&emit->as->base, 1, 5);
|
|
mp_asm_base_data(&emit->as->base, 1, emit->scope->simple_name);
|
|
mp_asm_base_data(&emit->as->base, 1, emit->scope->simple_name >> 8);
|
|
mp_asm_base_data(&emit->as->base, 1, emit->scope->source_file);
|
|
mp_asm_base_data(&emit->as->base, 1, emit->scope->source_file >> 8);
|
|
#else
|
|
mp_asm_base_data(&emit->as->base, 1, 1);
|
|
#endif
|
|
|
|
// bytecode prelude: initialise closed over variables
|
|
for (int i = 0; i < emit->scope->id_info_len; i++) {
|
|
id_info_t *id = &emit->scope->id_info[i];
|
|
if (id->kind == ID_INFO_KIND_CELL) {
|
|
assert(id->local_num < 255);
|
|
mp_asm_base_data(&emit->as->base, 1, id->local_num); // write the local which should be converted to a cell
|
|
}
|
|
}
|
|
mp_asm_base_data(&emit->as->base, 1, 255); // end of list sentinel
|
|
|
|
mp_asm_base_align(&emit->as->base, ASM_WORD_SIZE);
|
|
emit->const_table_offset = mp_asm_base_get_code_pos(&emit->as->base);
|
|
|
|
// write argument names as qstr objects
|
|
// see comment in corresponding part of emitbc.c about the logic here
|
|
for (int i = 0; i < emit->scope->num_pos_args + emit->scope->num_kwonly_args; i++) {
|
|
qstr qst = MP_QSTR__star_;
|
|
for (int j = 0; j < emit->scope->id_info_len; ++j) {
|
|
id_info_t *id = &emit->scope->id_info[j];
|
|
if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) {
|
|
qst = id->qst;
|
|
break;
|
|
}
|
|
}
|
|
mp_asm_base_data(&emit->as->base, ASM_WORD_SIZE, (mp_uint_t)MP_OBJ_NEW_QSTR(qst));
|
|
}
|
|
|
|
}
|
|
|
|
ASM_END_PASS(emit->as);
|
|
|
|
// check stack is back to zero size
|
|
assert(emit->stack_size == 0);
|
|
|
|
if (emit->pass == MP_PASS_EMIT) {
|
|
void *f = mp_asm_base_get_code(&emit->as->base);
|
|
mp_uint_t f_len = mp_asm_base_get_code_size(&emit->as->base);
|
|
|
|
// compute type signature
|
|
// note that the lower 4 bits of a vtype are tho correct MP_NATIVE_TYPE_xxx
|
|
mp_uint_t type_sig = emit->return_vtype & 0xf;
|
|
for (mp_uint_t i = 0; i < emit->scope->num_pos_args; i++) {
|
|
type_sig |= (emit->local_vtype[i] & 0xf) << (i * 4 + 4);
|
|
}
|
|
|
|
mp_emit_glue_assign_native(emit->scope->raw_code,
|
|
emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY,
|
|
f, f_len, (mp_uint_t*)((byte*)f + emit->const_table_offset),
|
|
emit->scope->num_pos_args, emit->scope->scope_flags, type_sig);
|
|
}
|
|
}
|
|
|
|
STATIC bool emit_native_last_emit_was_return_value(emit_t *emit) {
|
|
return emit->last_emit_was_return_value;
|
|
}
|
|
|
|
STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) {
|
|
assert((mp_int_t)emit->stack_size + stack_size_delta >= 0);
|
|
emit->stack_size += stack_size_delta;
|
|
if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) {
|
|
emit->scope->stack_size = emit->stack_size;
|
|
}
|
|
#ifdef DEBUG_PRINT
|
|
DEBUG_printf(" adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta);
|
|
for (int i = 0; i < emit->stack_size; i++) {
|
|
stack_info_t *si = &emit->stack_info[i];
|
|
DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg);
|
|
}
|
|
DEBUG_printf("\n");
|
|
#endif
|
|
}
|
|
|
|
STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) {
|
|
DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta);
|
|
// If we are adjusting the stack in a positive direction (pushing) then we
|
|
// need to fill in values for the stack kind and vtype of the newly-pushed
|
|
// entries. These should be set to "value" (ie not reg or imm) because we
|
|
// should only need to adjust the stack due to a jump to this part in the
|
|
// code (and hence we have settled the stack before the jump).
|
|
for (mp_int_t i = 0; i < delta; i++) {
|
|
stack_info_t *si = &emit->stack_info[emit->stack_size + i];
|
|
si->kind = STACK_VALUE;
|
|
// TODO we don't know the vtype to use here. At the moment this is a
|
|
// hack to get the case of multi comparison working.
|
|
if (delta == 1) {
|
|
si->vtype = emit->saved_stack_vtype;
|
|
} else {
|
|
si->vtype = VTYPE_PYOBJ;
|
|
}
|
|
}
|
|
adjust_stack(emit, delta);
|
|
}
|
|
|
|
STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) {
|
|
(void)emit;
|
|
(void)source_line;
|
|
}
|
|
|
|
// this must be called at start of emit functions
|
|
STATIC void emit_native_pre(emit_t *emit) {
|
|
emit->last_emit_was_return_value = false;
|
|
}
|
|
|
|
// depth==0 is top, depth==1 is before top, etc
|
|
STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) {
|
|
return &emit->stack_info[emit->stack_size - 1 - depth];
|
|
}
|
|
|
|
// depth==0 is top, depth==1 is before top, etc
|
|
STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) {
|
|
return peek_stack(emit, depth)->vtype;
|
|
}
|
|
|
|
// pos=1 is TOS, pos=2 is next, etc
|
|
// use pos=0 for no skipping
|
|
STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) {
|
|
skip_stack_pos = emit->stack_size - skip_stack_pos;
|
|
for (int i = 0; i < emit->stack_size; i++) {
|
|
if (i != skip_stack_pos) {
|
|
stack_info_t *si = &emit->stack_info[i];
|
|
if (si->kind == STACK_REG && si->data.u_reg == reg_needed) {
|
|
si->kind = STACK_VALUE;
|
|
ASM_MOV_LOCAL_REG(emit->as, emit->stack_start + i, si->data.u_reg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void need_reg_all(emit_t *emit) {
|
|
for (int i = 0; i < emit->stack_size; i++) {
|
|
stack_info_t *si = &emit->stack_info[i];
|
|
if (si->kind == STACK_REG) {
|
|
si->kind = STACK_VALUE;
|
|
ASM_MOV_LOCAL_REG(emit->as, emit->stack_start + i, si->data.u_reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void need_stack_settled(emit_t *emit) {
|
|
DEBUG_printf(" need_stack_settled; stack_size=%d\n", emit->stack_size);
|
|
for (int i = 0; i < emit->stack_size; i++) {
|
|
stack_info_t *si = &emit->stack_info[i];
|
|
if (si->kind == STACK_REG) {
|
|
DEBUG_printf(" reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i);
|
|
si->kind = STACK_VALUE;
|
|
ASM_MOV_LOCAL_REG(emit->as, emit->stack_start + i, si->data.u_reg);
|
|
}
|
|
}
|
|
for (int i = 0; i < emit->stack_size; i++) {
|
|
stack_info_t *si = &emit->stack_info[i];
|
|
if (si->kind == STACK_IMM) {
|
|
DEBUG_printf(" imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i);
|
|
si->kind = STACK_VALUE;
|
|
ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + i, si->data.u_imm, REG_TEMP0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// pos=1 is TOS, pos=2 is next, etc
|
|
STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) {
|
|
need_reg_single(emit, reg_dest, pos);
|
|
stack_info_t *si = &emit->stack_info[emit->stack_size - pos];
|
|
*vtype = si->vtype;
|
|
switch (si->kind) {
|
|
case STACK_VALUE:
|
|
ASM_MOV_REG_LOCAL(emit->as, reg_dest, emit->stack_start + emit->stack_size - pos);
|
|
break;
|
|
|
|
case STACK_REG:
|
|
if (si->data.u_reg != reg_dest) {
|
|
ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg);
|
|
}
|
|
break;
|
|
|
|
case STACK_IMM:
|
|
ASM_MOV_REG_IMM(emit->as, reg_dest, si->data.u_imm);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// does an efficient X=pop(); discard(); push(X)
|
|
// needs a (non-temp) register in case the poped element was stored in the stack
|
|
STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) {
|
|
stack_info_t *si = &emit->stack_info[emit->stack_size - 2];
|
|
si[0] = si[1];
|
|
if (si->kind == STACK_VALUE) {
|
|
// if folded element was on the stack we need to put it in a register
|
|
ASM_MOV_REG_LOCAL(emit->as, reg_dest, emit->stack_start + emit->stack_size - 1);
|
|
si->kind = STACK_REG;
|
|
si->data.u_reg = reg_dest;
|
|
}
|
|
adjust_stack(emit, -1);
|
|
}
|
|
|
|
// If stacked value is in a register and the register is not r1 or r2, then
|
|
// *reg_dest is set to that register. Otherwise the value is put in *reg_dest.
|
|
STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) {
|
|
emit->last_emit_was_return_value = false;
|
|
stack_info_t *si = peek_stack(emit, 0);
|
|
if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) {
|
|
*vtype = si->vtype;
|
|
*reg_dest = si->data.u_reg;
|
|
need_reg_single(emit, *reg_dest, 1);
|
|
} else {
|
|
emit_access_stack(emit, 1, vtype, *reg_dest);
|
|
}
|
|
adjust_stack(emit, -1);
|
|
}
|
|
|
|
STATIC void emit_pre_pop_discard(emit_t *emit) {
|
|
emit->last_emit_was_return_value = false;
|
|
adjust_stack(emit, -1);
|
|
}
|
|
|
|
STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) {
|
|
emit->last_emit_was_return_value = false;
|
|
emit_access_stack(emit, 1, vtype, reg_dest);
|
|
adjust_stack(emit, -1);
|
|
}
|
|
|
|
STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) {
|
|
emit_pre_pop_reg(emit, vtypea, rega);
|
|
emit_pre_pop_reg(emit, vtypeb, regb);
|
|
}
|
|
|
|
STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) {
|
|
emit_pre_pop_reg(emit, vtypea, rega);
|
|
emit_pre_pop_reg(emit, vtypeb, regb);
|
|
emit_pre_pop_reg(emit, vtypec, regc);
|
|
}
|
|
|
|
STATIC void emit_post(emit_t *emit) {
|
|
(void)emit;
|
|
}
|
|
|
|
STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) {
|
|
stack_info_t *si = &emit->stack_info[emit->stack_size - 1];
|
|
si->vtype = new_vtype;
|
|
}
|
|
|
|
STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) {
|
|
stack_info_t *si = &emit->stack_info[emit->stack_size];
|
|
si->vtype = vtype;
|
|
si->kind = STACK_REG;
|
|
si->data.u_reg = reg;
|
|
adjust_stack(emit, 1);
|
|
}
|
|
|
|
STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) {
|
|
stack_info_t *si = &emit->stack_info[emit->stack_size];
|
|
si->vtype = vtype;
|
|
si->kind = STACK_IMM;
|
|
si->data.u_imm = imm;
|
|
adjust_stack(emit, 1);
|
|
}
|
|
|
|
STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) {
|
|
emit_post_push_reg(emit, vtypea, rega);
|
|
emit_post_push_reg(emit, vtypeb, regb);
|
|
}
|
|
|
|
STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) {
|
|
emit_post_push_reg(emit, vtypea, rega);
|
|
emit_post_push_reg(emit, vtypeb, regb);
|
|
emit_post_push_reg(emit, vtypec, regc);
|
|
}
|
|
|
|
STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) {
|
|
emit_post_push_reg(emit, vtypea, rega);
|
|
emit_post_push_reg(emit, vtypeb, regb);
|
|
emit_post_push_reg(emit, vtypec, regc);
|
|
emit_post_push_reg(emit, vtyped, regd);
|
|
}
|
|
|
|
STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) {
|
|
need_reg_all(emit);
|
|
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
|
|
}
|
|
|
|
STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) {
|
|
need_reg_all(emit);
|
|
ASM_MOV_REG_IMM(emit->as, arg_reg, arg_val);
|
|
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
|
|
}
|
|
|
|
// the first arg is stored in the code aligned on a mp_uint_t boundary
|
|
STATIC void emit_call_with_imm_arg_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) {
|
|
need_reg_all(emit);
|
|
ASM_MOV_REG_ALIGNED_IMM(emit->as, arg_reg, arg_val);
|
|
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
|
|
}
|
|
|
|
STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) {
|
|
need_reg_all(emit);
|
|
ASM_MOV_REG_IMM(emit->as, arg_reg1, arg_val1);
|
|
ASM_MOV_REG_IMM(emit->as, arg_reg2, arg_val2);
|
|
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
|
|
}
|
|
|
|
// the first arg is stored in the code aligned on a mp_uint_t boundary
|
|
STATIC void emit_call_with_3_imm_args_and_first_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2, mp_int_t arg_val3, int arg_reg3) {
|
|
need_reg_all(emit);
|
|
ASM_MOV_REG_ALIGNED_IMM(emit->as, arg_reg1, arg_val1);
|
|
ASM_MOV_REG_IMM(emit->as, arg_reg2, arg_val2);
|
|
ASM_MOV_REG_IMM(emit->as, arg_reg3, arg_val3);
|
|
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
|
|
}
|
|
|
|
// vtype of all n_pop objects is VTYPE_PYOBJ
|
|
// Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack.
|
|
// If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET.
|
|
// Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer).
|
|
STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) {
|
|
need_reg_all(emit);
|
|
|
|
// First, store any immediate values to their respective place on the stack.
|
|
for (mp_uint_t i = 0; i < n_pop; i++) {
|
|
stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
|
|
// must push any imm's to stack
|
|
// must convert them to VTYPE_PYOBJ for viper code
|
|
if (si->kind == STACK_IMM) {
|
|
si->kind = STACK_VALUE;
|
|
switch (si->vtype) {
|
|
case VTYPE_PYOBJ:
|
|
ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + emit->stack_size - 1 - i, si->data.u_imm, reg_dest);
|
|
break;
|
|
case VTYPE_BOOL:
|
|
if (si->data.u_imm == 0) {
|
|
ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + emit->stack_size - 1 - i, (mp_uint_t)mp_const_false, reg_dest);
|
|
} else {
|
|
ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + emit->stack_size - 1 - i, (mp_uint_t)mp_const_true, reg_dest);
|
|
}
|
|
si->vtype = VTYPE_PYOBJ;
|
|
break;
|
|
case VTYPE_INT:
|
|
case VTYPE_UINT:
|
|
ASM_MOV_LOCAL_IMM_VIA(emit->as, emit->stack_start + emit->stack_size - 1 - i, (uintptr_t)MP_OBJ_NEW_SMALL_INT(si->data.u_imm), reg_dest);
|
|
si->vtype = VTYPE_PYOBJ;
|
|
break;
|
|
default:
|
|
// not handled
|
|
mp_raise_NotImplementedError("conversion to object");
|
|
}
|
|
}
|
|
|
|
// verify that this value is on the stack
|
|
assert(si->kind == STACK_VALUE);
|
|
}
|
|
|
|
// Second, convert any non-VTYPE_PYOBJ to that type.
|
|
for (mp_uint_t i = 0; i < n_pop; i++) {
|
|
stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
|
|
if (si->vtype != VTYPE_PYOBJ) {
|
|
mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i;
|
|
ASM_MOV_REG_LOCAL(emit->as, REG_ARG_1, local_num);
|
|
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type
|
|
ASM_MOV_LOCAL_REG(emit->as, local_num, REG_RET);
|
|
si->vtype = VTYPE_PYOBJ;
|
|
DEBUG_printf(" convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num);
|
|
}
|
|
}
|
|
|
|
// Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest.
|
|
adjust_stack(emit, -n_pop);
|
|
ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, emit->stack_start + emit->stack_size);
|
|
}
|
|
|
|
// vtype of all n_push objects is VTYPE_PYOBJ
|
|
STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) {
|
|
need_reg_all(emit);
|
|
for (mp_uint_t i = 0; i < n_push; i++) {
|
|
emit->stack_info[emit->stack_size + i].kind = STACK_VALUE;
|
|
emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ;
|
|
}
|
|
ASM_MOV_REG_LOCAL_ADDR(emit->as, reg_dest, emit->stack_start + emit->stack_size);
|
|
adjust_stack(emit, n_push);
|
|
}
|
|
|
|
STATIC void emit_native_label_assign(emit_t *emit, mp_uint_t l) {
|
|
DEBUG_printf("label_assign(" UINT_FMT ")\n", l);
|
|
emit_native_pre(emit);
|
|
// need to commit stack because we can jump here from elsewhere
|
|
need_stack_settled(emit);
|
|
mp_asm_base_label_assign(&emit->as->base, l);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_import_name(emit_t *emit, qstr qst) {
|
|
DEBUG_printf("import_name %s\n", qstr_str(qst));
|
|
|
|
// get arguments from stack: arg2 = fromlist, arg3 = level
|
|
// if using viper types these arguments must be converted to proper objects
|
|
if (emit->do_viper_types) {
|
|
// fromlist should be None or a tuple
|
|
stack_info_t *top = peek_stack(emit, 0);
|
|
if (top->vtype == VTYPE_PTR_NONE) {
|
|
emit_pre_pop_discard(emit);
|
|
ASM_MOV_REG_IMM(emit->as, REG_ARG_2, (mp_uint_t)mp_const_none);
|
|
} else {
|
|
vtype_kind_t vtype_fromlist;
|
|
emit_pre_pop_reg(emit, &vtype_fromlist, REG_ARG_2);
|
|
assert(vtype_fromlist == VTYPE_PYOBJ);
|
|
}
|
|
|
|
// level argument should be an immediate integer
|
|
top = peek_stack(emit, 0);
|
|
assert(top->vtype == VTYPE_INT && top->kind == STACK_IMM);
|
|
ASM_MOV_REG_IMM(emit->as, REG_ARG_3, (mp_uint_t)MP_OBJ_NEW_SMALL_INT(top->data.u_imm));
|
|
emit_pre_pop_discard(emit);
|
|
|
|
} else {
|
|
vtype_kind_t vtype_fromlist;
|
|
vtype_kind_t vtype_level;
|
|
emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3);
|
|
assert(vtype_fromlist == VTYPE_PYOBJ);
|
|
assert(vtype_level == VTYPE_PYOBJ);
|
|
}
|
|
|
|
emit_call_with_imm_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_import_from(emit_t *emit, qstr qst) {
|
|
DEBUG_printf("import_from %s\n", qstr_str(qst));
|
|
emit_native_pre(emit);
|
|
vtype_kind_t vtype_module;
|
|
emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module
|
|
assert(vtype_module == VTYPE_PYOBJ);
|
|
emit_call_with_imm_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_import_star(emit_t *emit) {
|
|
DEBUG_printf("import_star\n");
|
|
vtype_kind_t vtype_module;
|
|
emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module
|
|
assert(vtype_module == VTYPE_PYOBJ);
|
|
emit_call(emit, MP_F_IMPORT_ALL);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_import(emit_t *emit, qstr qst, int kind) {
|
|
if (kind == MP_EMIT_IMPORT_NAME) {
|
|
emit_native_import_name(emit, qst);
|
|
} else if (kind == MP_EMIT_IMPORT_FROM) {
|
|
emit_native_import_from(emit, qst);
|
|
} else {
|
|
emit_native_import_star(emit);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) {
|
|
DEBUG_printf("load_const_tok(tok=%u)\n", tok);
|
|
emit_native_pre(emit);
|
|
vtype_kind_t vtype;
|
|
mp_uint_t val;
|
|
if (emit->do_viper_types) {
|
|
switch (tok) {
|
|
case MP_TOKEN_KW_NONE: vtype = VTYPE_PTR_NONE; val = 0; break;
|
|
case MP_TOKEN_KW_FALSE: vtype = VTYPE_BOOL; val = 0; break;
|
|
case MP_TOKEN_KW_TRUE: vtype = VTYPE_BOOL; val = 1; break;
|
|
default:
|
|
assert(tok == MP_TOKEN_ELLIPSIS);
|
|
vtype = VTYPE_PYOBJ; val = (mp_uint_t)&mp_const_ellipsis_obj; break;
|
|
}
|
|
} else {
|
|
vtype = VTYPE_PYOBJ;
|
|
switch (tok) {
|
|
case MP_TOKEN_KW_NONE: val = (mp_uint_t)mp_const_none; break;
|
|
case MP_TOKEN_KW_FALSE: val = (mp_uint_t)mp_const_false; break;
|
|
case MP_TOKEN_KW_TRUE: val = (mp_uint_t)mp_const_true; break;
|
|
default:
|
|
assert(tok == MP_TOKEN_ELLIPSIS);
|
|
val = (mp_uint_t)&mp_const_ellipsis_obj; break;
|
|
}
|
|
}
|
|
emit_post_push_imm(emit, vtype, val);
|
|
}
|
|
|
|
STATIC void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) {
|
|
DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg);
|
|
emit_native_pre(emit);
|
|
if (emit->do_viper_types) {
|
|
emit_post_push_imm(emit, VTYPE_INT, arg);
|
|
} else {
|
|
emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)MP_OBJ_NEW_SMALL_INT(arg));
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_load_const_str(emit_t *emit, qstr qst) {
|
|
emit_native_pre(emit);
|
|
// TODO: Eventually we want to be able to work with raw pointers in viper to
|
|
// do native array access. For now we just load them as any other object.
|
|
/*
|
|
if (emit->do_viper_types) {
|
|
// load a pointer to the asciiz string?
|
|
emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst));
|
|
} else
|
|
*/
|
|
{
|
|
emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)MP_OBJ_NEW_QSTR(qst));
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_load_const_obj(emit_t *emit, mp_obj_t obj) {
|
|
emit_native_pre(emit);
|
|
need_reg_single(emit, REG_RET, 0);
|
|
ASM_MOV_REG_ALIGNED_IMM(emit->as, REG_RET, (mp_uint_t)obj);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_load_null(emit_t *emit) {
|
|
emit_native_pre(emit);
|
|
emit_post_push_imm(emit, VTYPE_PYOBJ, 0);
|
|
}
|
|
|
|
STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
|
|
DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
|
|
vtype_kind_t vtype = emit->local_vtype[local_num];
|
|
if (vtype == VTYPE_UNBOUND) {
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "local '%q' used before type known", qst);
|
|
}
|
|
emit_native_pre(emit);
|
|
if (local_num == 0) {
|
|
emit_post_push_reg(emit, vtype, REG_LOCAL_1);
|
|
} else if (local_num == 1) {
|
|
emit_post_push_reg(emit, vtype, REG_LOCAL_2);
|
|
} else if (local_num == 2) {
|
|
emit_post_push_reg(emit, vtype, REG_LOCAL_3);
|
|
} else {
|
|
need_reg_single(emit, REG_TEMP0, 0);
|
|
if (emit->do_viper_types) {
|
|
ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, local_num - REG_LOCAL_NUM);
|
|
} else {
|
|
ASM_MOV_REG_LOCAL(emit->as, REG_TEMP0, STATE_START + emit->n_state - 1 - local_num);
|
|
}
|
|
emit_post_push_reg(emit, vtype, REG_TEMP0);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
|
|
DEBUG_printf("load_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
|
|
need_reg_single(emit, REG_RET, 0);
|
|
emit_native_load_fast(emit, qst, local_num);
|
|
vtype_kind_t vtype;
|
|
int reg_base = REG_RET;
|
|
emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1);
|
|
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_RET, reg_base, 1);
|
|
// closed over vars are always Python objects
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
|
|
if (kind == MP_EMIT_IDOP_LOCAL_FAST) {
|
|
emit_native_load_fast(emit, qst, local_num);
|
|
} else {
|
|
emit_native_load_deref(emit, qst, local_num);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_load_global(emit_t *emit, qstr qst, int kind) {
|
|
MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_LOAD_NAME);
|
|
MP_STATIC_ASSERT(MP_F_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_LOAD_GLOBAL);
|
|
emit_native_pre(emit);
|
|
if (kind == MP_EMIT_IDOP_GLOBAL_NAME) {
|
|
DEBUG_printf("load_name(%s)\n", qstr_str(qst));
|
|
} else {
|
|
DEBUG_printf("load_global(%s)\n", qstr_str(qst));
|
|
if (emit->do_viper_types) {
|
|
// check for builtin casting operators
|
|
if (qst == MP_QSTR_int) {
|
|
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_INT);
|
|
return;
|
|
} else if (qst == MP_QSTR_uint) {
|
|
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_UINT);
|
|
return;
|
|
} else if (qst == MP_QSTR_ptr) {
|
|
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR);
|
|
return;
|
|
} else if (qst == MP_QSTR_ptr8) {
|
|
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR8);
|
|
return;
|
|
} else if (qst == MP_QSTR_ptr16) {
|
|
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR16);
|
|
return;
|
|
} else if (qst == MP_QSTR_ptr32) {
|
|
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR32);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
emit_call_with_imm_arg(emit, MP_F_LOAD_NAME + kind, qst, REG_ARG_1);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_load_attr(emit_t *emit, qstr qst) {
|
|
// depends on type of subject:
|
|
// - integer, function, pointer to integers: error
|
|
// - pointer to structure: get member, quite easy
|
|
// - Python object: call mp_load_attr, and needs to be typed to convert result
|
|
vtype_kind_t vtype_base;
|
|
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
|
|
assert(vtype_base == VTYPE_PYOBJ);
|
|
emit_call_with_imm_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_load_method(emit_t *emit, qstr qst, bool is_super) {
|
|
if (is_super) {
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, 3); // arg2 = dest ptr
|
|
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, 2); // arg2 = dest ptr
|
|
emit_call_with_imm_arg(emit, MP_F_LOAD_SUPER_METHOD, qst, REG_ARG_1); // arg1 = method name
|
|
} else {
|
|
vtype_kind_t vtype_base;
|
|
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
|
|
assert(vtype_base == VTYPE_PYOBJ);
|
|
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
|
|
emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_load_build_class(emit_t *emit) {
|
|
emit_native_pre(emit);
|
|
emit_call(emit, MP_F_LOAD_BUILD_CLASS);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_load_subscr(emit_t *emit) {
|
|
DEBUG_printf("load_subscr\n");
|
|
// need to compile: base[index]
|
|
|
|
// pop: index, base
|
|
// optimise case where index is an immediate
|
|
vtype_kind_t vtype_base = peek_vtype(emit, 1);
|
|
|
|
if (vtype_base == VTYPE_PYOBJ) {
|
|
// standard Python subscr
|
|
// TODO factor this implicit cast code with other uses of it
|
|
vtype_kind_t vtype_index = peek_vtype(emit, 0);
|
|
if (vtype_index == VTYPE_PYOBJ) {
|
|
emit_pre_pop_reg(emit, &vtype_index, REG_ARG_2);
|
|
} else {
|
|
emit_pre_pop_reg(emit, &vtype_index, REG_ARG_1);
|
|
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype_index, REG_ARG_2); // arg2 = type
|
|
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
|
|
}
|
|
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
|
|
emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
} else {
|
|
// viper load
|
|
// TODO The different machine architectures have very different
|
|
// capabilities and requirements for loads, so probably best to
|
|
// write a completely separate load-optimiser for each one.
|
|
stack_info_t *top = peek_stack(emit, 0);
|
|
if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
|
|
// index is an immediate
|
|
mp_int_t index_value = top->data.u_imm;
|
|
emit_pre_pop_discard(emit); // discard index
|
|
int reg_base = REG_ARG_1;
|
|
int reg_index = REG_ARG_2;
|
|
emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_index);
|
|
switch (vtype_base) {
|
|
case VTYPE_PTR8: {
|
|
// pointer to 8-bit memory
|
|
// TODO optimise to use thumb ldrb r1, [r2, r3]
|
|
if (index_value != 0) {
|
|
// index is non-zero
|
|
#if N_THUMB
|
|
if (index_value > 0 && index_value < 32) {
|
|
asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
|
|
break;
|
|
}
|
|
#endif
|
|
ASM_MOV_REG_IMM(emit->as, reg_index, index_value);
|
|
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
|
|
reg_base = reg_index;
|
|
}
|
|
ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index)
|
|
break;
|
|
}
|
|
case VTYPE_PTR16: {
|
|
// pointer to 16-bit memory
|
|
if (index_value != 0) {
|
|
// index is a non-zero immediate
|
|
#if N_THUMB
|
|
if (index_value > 0 && index_value < 32) {
|
|
asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
|
|
break;
|
|
}
|
|
#endif
|
|
ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1);
|
|
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
|
|
reg_base = reg_index;
|
|
}
|
|
ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index)
|
|
break;
|
|
}
|
|
case VTYPE_PTR32: {
|
|
// pointer to 32-bit memory
|
|
if (index_value != 0) {
|
|
// index is a non-zero immediate
|
|
#if N_THUMB
|
|
if (index_value > 0 && index_value < 32) {
|
|
asm_thumb_ldr_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
|
|
break;
|
|
}
|
|
#endif
|
|
ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2);
|
|
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base
|
|
reg_base = reg_index;
|
|
}
|
|
ASM_LOAD32_REG_REG(emit->as, REG_RET, reg_base); // load from (base+4*index)
|
|
break;
|
|
}
|
|
default:
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't load from '%q'", vtype_to_qstr(vtype_base));
|
|
}
|
|
} else {
|
|
// index is not an immediate
|
|
vtype_kind_t vtype_index;
|
|
int reg_index = REG_ARG_2;
|
|
emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, REG_ARG_1);
|
|
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
|
|
if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) {
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't load with '%q' index", vtype_to_qstr(vtype_index));
|
|
}
|
|
switch (vtype_base) {
|
|
case VTYPE_PTR8: {
|
|
// pointer to 8-bit memory
|
|
// TODO optimise to use thumb ldrb r1, [r2, r3]
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index)
|
|
break;
|
|
}
|
|
case VTYPE_PTR16: {
|
|
// pointer to 16-bit memory
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index)
|
|
break;
|
|
}
|
|
case VTYPE_PTR32: {
|
|
// pointer to word-size memory
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_LOAD32_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+4*index)
|
|
break;
|
|
}
|
|
default:
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't load from '%q'", vtype_to_qstr(vtype_base));
|
|
}
|
|
}
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_RET);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
|
|
vtype_kind_t vtype;
|
|
if (local_num == 0) {
|
|
emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1);
|
|
} else if (local_num == 1) {
|
|
emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2);
|
|
} else if (local_num == 2) {
|
|
emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3);
|
|
} else {
|
|
emit_pre_pop_reg(emit, &vtype, REG_TEMP0);
|
|
if (emit->do_viper_types) {
|
|
ASM_MOV_LOCAL_REG(emit->as, local_num - REG_LOCAL_NUM, REG_TEMP0);
|
|
} else {
|
|
ASM_MOV_LOCAL_REG(emit->as, STATE_START + emit->n_state - 1 - local_num, REG_TEMP0);
|
|
}
|
|
}
|
|
emit_post(emit);
|
|
|
|
// check types
|
|
if (emit->local_vtype[local_num] == VTYPE_UNBOUND) {
|
|
// first time this local is assigned, so give it a type of the object stored in it
|
|
emit->local_vtype[local_num] = vtype;
|
|
} else if (emit->local_vtype[local_num] != vtype) {
|
|
// type of local is not the same as object stored in it
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"local '%q' has type '%q' but source is '%q'",
|
|
qst, vtype_to_qstr(emit->local_vtype[local_num]), vtype_to_qstr(vtype));
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
|
|
DEBUG_printf("store_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
|
|
need_reg_single(emit, REG_TEMP0, 0);
|
|
need_reg_single(emit, REG_TEMP1, 0);
|
|
emit_native_load_fast(emit, qst, local_num);
|
|
vtype_kind_t vtype;
|
|
int reg_base = REG_TEMP0;
|
|
emit_pre_pop_reg_flexible(emit, &vtype, ®_base, -1, -1);
|
|
int reg_src = REG_TEMP1;
|
|
emit_pre_pop_reg_flexible(emit, &vtype, ®_src, reg_base, reg_base);
|
|
ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, reg_base, 1);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
|
|
if (kind == MP_EMIT_IDOP_LOCAL_FAST) {
|
|
emit_native_store_fast(emit, qst, local_num);
|
|
} else {
|
|
emit_native_store_deref(emit, qst, local_num);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_store_global(emit_t *emit, qstr qst, int kind) {
|
|
MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_STORE_NAME);
|
|
MP_STATIC_ASSERT(MP_F_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_STORE_GLOBAL);
|
|
if (kind == MP_EMIT_IDOP_GLOBAL_NAME) {
|
|
// mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type))
|
|
vtype_kind_t vtype;
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
|
|
assert(vtype == VTYPE_PYOBJ);
|
|
} else {
|
|
vtype_kind_t vtype = peek_vtype(emit, 0);
|
|
if (vtype == VTYPE_PYOBJ) {
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
|
|
} else {
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
|
|
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type
|
|
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
|
|
}
|
|
}
|
|
emit_call_with_imm_arg(emit, MP_F_STORE_NAME + kind, qst, REG_ARG_1); // arg1 = name
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_store_attr(emit_t *emit, qstr qst) {
|
|
vtype_kind_t vtype_base, vtype_val;
|
|
emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value
|
|
assert(vtype_base == VTYPE_PYOBJ);
|
|
assert(vtype_val == VTYPE_PYOBJ);
|
|
emit_call_with_imm_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_store_subscr(emit_t *emit) {
|
|
DEBUG_printf("store_subscr\n");
|
|
// need to compile: base[index] = value
|
|
|
|
// pop: index, base, value
|
|
// optimise case where index is an immediate
|
|
vtype_kind_t vtype_base = peek_vtype(emit, 1);
|
|
|
|
if (vtype_base == VTYPE_PYOBJ) {
|
|
// standard Python subscr
|
|
vtype_kind_t vtype_index = peek_vtype(emit, 0);
|
|
vtype_kind_t vtype_value = peek_vtype(emit, 2);
|
|
if (vtype_index != VTYPE_PYOBJ || vtype_value != VTYPE_PYOBJ) {
|
|
// need to implicitly convert non-objects to objects
|
|
// TODO do this properly
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, 3);
|
|
adjust_stack(emit, 3);
|
|
}
|
|
emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3);
|
|
emit_call(emit, MP_F_OBJ_SUBSCR);
|
|
} else {
|
|
// viper store
|
|
// TODO The different machine architectures have very different
|
|
// capabilities and requirements for stores, so probably best to
|
|
// write a completely separate store-optimiser for each one.
|
|
stack_info_t *top = peek_stack(emit, 0);
|
|
if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
|
|
// index is an immediate
|
|
mp_int_t index_value = top->data.u_imm;
|
|
emit_pre_pop_discard(emit); // discard index
|
|
vtype_kind_t vtype_value;
|
|
int reg_base = REG_ARG_1;
|
|
int reg_index = REG_ARG_2;
|
|
int reg_value = REG_ARG_3;
|
|
emit_pre_pop_reg_flexible(emit, &vtype_base, ®_base, reg_index, reg_value);
|
|
#if N_X86
|
|
// special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
|
|
emit_pre_pop_reg(emit, &vtype_value, reg_value);
|
|
#else
|
|
emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, reg_base, reg_index);
|
|
#endif
|
|
if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) {
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't store '%q'", vtype_to_qstr(vtype_value));
|
|
}
|
|
switch (vtype_base) {
|
|
case VTYPE_PTR8: {
|
|
// pointer to 8-bit memory
|
|
// TODO optimise to use thumb strb r1, [r2, r3]
|
|
if (index_value != 0) {
|
|
// index is non-zero
|
|
#if N_THUMB
|
|
if (index_value > 0 && index_value < 32) {
|
|
asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
|
|
break;
|
|
}
|
|
#endif
|
|
ASM_MOV_REG_IMM(emit->as, reg_index, index_value);
|
|
#if N_ARM
|
|
asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
|
|
return;
|
|
#endif
|
|
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
|
|
reg_base = reg_index;
|
|
}
|
|
ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index)
|
|
break;
|
|
}
|
|
case VTYPE_PTR16: {
|
|
// pointer to 16-bit memory
|
|
if (index_value != 0) {
|
|
// index is a non-zero immediate
|
|
#if N_THUMB
|
|
if (index_value > 0 && index_value < 32) {
|
|
asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
|
|
break;
|
|
}
|
|
#endif
|
|
ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 1);
|
|
#if N_ARM
|
|
asm_arm_strh_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
|
|
return;
|
|
#endif
|
|
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
|
|
reg_base = reg_index;
|
|
}
|
|
ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index)
|
|
break;
|
|
}
|
|
case VTYPE_PTR32: {
|
|
// pointer to 32-bit memory
|
|
if (index_value != 0) {
|
|
// index is a non-zero immediate
|
|
#if N_THUMB
|
|
if (index_value > 0 && index_value < 32) {
|
|
asm_thumb_str_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
|
|
break;
|
|
}
|
|
#endif
|
|
ASM_MOV_REG_IMM(emit->as, reg_index, index_value << 2);
|
|
#if N_ARM
|
|
asm_arm_str_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
|
|
return;
|
|
#endif
|
|
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 4*index to base
|
|
reg_base = reg_index;
|
|
}
|
|
ASM_STORE32_REG_REG(emit->as, reg_value, reg_base); // store value to (base+4*index)
|
|
break;
|
|
}
|
|
default:
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't store to '%q'", vtype_to_qstr(vtype_base));
|
|
}
|
|
} else {
|
|
// index is not an immediate
|
|
vtype_kind_t vtype_index, vtype_value;
|
|
int reg_index = REG_ARG_2;
|
|
int reg_value = REG_ARG_3;
|
|
emit_pre_pop_reg_flexible(emit, &vtype_index, ®_index, REG_ARG_1, reg_value);
|
|
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
|
|
if (vtype_index != VTYPE_INT && vtype_index != VTYPE_UINT) {
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't store with '%q' index", vtype_to_qstr(vtype_index));
|
|
}
|
|
#if N_X86
|
|
// special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
|
|
emit_pre_pop_reg(emit, &vtype_value, reg_value);
|
|
#else
|
|
emit_pre_pop_reg_flexible(emit, &vtype_value, ®_value, REG_ARG_1, reg_index);
|
|
#endif
|
|
if (vtype_value != VTYPE_BOOL && vtype_value != VTYPE_INT && vtype_value != VTYPE_UINT) {
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't store '%q'", vtype_to_qstr(vtype_value));
|
|
}
|
|
switch (vtype_base) {
|
|
case VTYPE_PTR8: {
|
|
// pointer to 8-bit memory
|
|
// TODO optimise to use thumb strb r1, [r2, r3]
|
|
#if N_ARM
|
|
asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
|
|
break;
|
|
#endif
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index)
|
|
break;
|
|
}
|
|
case VTYPE_PTR16: {
|
|
// pointer to 16-bit memory
|
|
#if N_ARM
|
|
asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
|
|
break;
|
|
#endif
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index)
|
|
break;
|
|
}
|
|
case VTYPE_PTR32: {
|
|
// pointer to 32-bit memory
|
|
#if N_ARM
|
|
asm_arm_str_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
|
|
break;
|
|
#endif
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
|
|
ASM_STORE32_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+4*index)
|
|
break;
|
|
}
|
|
default:
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't store to '%q'", vtype_to_qstr(vtype_base));
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
|
|
if (kind == MP_EMIT_IDOP_LOCAL_FAST) {
|
|
// TODO: This is not compliant implementation. We could use MP_OBJ_SENTINEL
|
|
// to mark deleted vars but then every var would need to be checked on
|
|
// each access. Very inefficient, so just set value to None to enable GC.
|
|
emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE);
|
|
emit_native_store_fast(emit, qst, local_num);
|
|
} else {
|
|
// TODO implement me!
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_delete_global(emit_t *emit, qstr qst, int kind) {
|
|
MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_F_DELETE_NAME);
|
|
MP_STATIC_ASSERT(MP_F_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_F_DELETE_GLOBAL);
|
|
emit_native_pre(emit);
|
|
emit_call_with_imm_arg(emit, MP_F_DELETE_NAME + kind, qst, REG_ARG_1);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_delete_attr(emit_t *emit, qstr qst) {
|
|
vtype_kind_t vtype_base;
|
|
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
|
|
assert(vtype_base == VTYPE_PYOBJ);
|
|
emit_call_with_2_imm_args(emit, MP_F_STORE_ATTR, qst, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); // arg2 = attribute name, arg3 = value (null for delete)
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_delete_subscr(emit_t *emit) {
|
|
vtype_kind_t vtype_index, vtype_base;
|
|
emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base
|
|
assert(vtype_index == VTYPE_PYOBJ);
|
|
assert(vtype_base == VTYPE_PYOBJ);
|
|
emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3);
|
|
}
|
|
|
|
STATIC void emit_native_subscr(emit_t *emit, int kind) {
|
|
if (kind == MP_EMIT_SUBSCR_LOAD) {
|
|
emit_native_load_subscr(emit);
|
|
} else if (kind == MP_EMIT_SUBSCR_STORE) {
|
|
emit_native_store_subscr(emit);
|
|
} else {
|
|
emit_native_delete_subscr(emit);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_attr(emit_t *emit, qstr qst, int kind) {
|
|
if (kind == MP_EMIT_ATTR_LOAD) {
|
|
emit_native_load_attr(emit, qst);
|
|
} else if (kind == MP_EMIT_ATTR_STORE) {
|
|
emit_native_store_attr(emit, qst);
|
|
} else {
|
|
emit_native_delete_attr(emit, qst);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_dup_top(emit_t *emit) {
|
|
DEBUG_printf("dup_top\n");
|
|
vtype_kind_t vtype;
|
|
int reg = REG_TEMP0;
|
|
emit_pre_pop_reg_flexible(emit, &vtype, ®, -1, -1);
|
|
emit_post_push_reg_reg(emit, vtype, reg, vtype, reg);
|
|
}
|
|
|
|
STATIC void emit_native_dup_top_two(emit_t *emit) {
|
|
vtype_kind_t vtype0, vtype1;
|
|
emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
|
|
emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0);
|
|
}
|
|
|
|
STATIC void emit_native_pop_top(emit_t *emit) {
|
|
DEBUG_printf("pop_top\n");
|
|
emit_pre_pop_discard(emit);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_rot_two(emit_t *emit) {
|
|
DEBUG_printf("rot_two\n");
|
|
vtype_kind_t vtype0, vtype1;
|
|
emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
|
|
emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1);
|
|
}
|
|
|
|
STATIC void emit_native_rot_three(emit_t *emit) {
|
|
DEBUG_printf("rot_three\n");
|
|
vtype_kind_t vtype0, vtype1, vtype2;
|
|
emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2);
|
|
emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1);
|
|
}
|
|
|
|
STATIC void emit_native_jump(emit_t *emit, mp_uint_t label) {
|
|
DEBUG_printf("jump(label=" UINT_FMT ")\n", label);
|
|
emit_native_pre(emit);
|
|
// need to commit stack because we are jumping elsewhere
|
|
need_stack_settled(emit);
|
|
ASM_JUMP(emit->as, label);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_jump_helper(emit_t *emit, bool cond, mp_uint_t label, bool pop) {
|
|
vtype_kind_t vtype = peek_vtype(emit, 0);
|
|
if (vtype == VTYPE_PYOBJ) {
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
|
|
if (!pop) {
|
|
adjust_stack(emit, 1);
|
|
}
|
|
emit_call(emit, MP_F_OBJ_IS_TRUE);
|
|
} else {
|
|
emit_pre_pop_reg(emit, &vtype, REG_RET);
|
|
if (!pop) {
|
|
adjust_stack(emit, 1);
|
|
}
|
|
if (!(vtype == VTYPE_BOOL || vtype == VTYPE_INT || vtype == VTYPE_UINT)) {
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't implicitly convert '%q' to 'bool'", vtype_to_qstr(vtype));
|
|
}
|
|
}
|
|
// For non-pop need to save the vtype so that emit_native_adjust_stack_size
|
|
// can use it. This is a bit of a hack.
|
|
if (!pop) {
|
|
emit->saved_stack_vtype = vtype;
|
|
}
|
|
// need to commit stack because we may jump elsewhere
|
|
need_stack_settled(emit);
|
|
// Emit the jump
|
|
if (cond) {
|
|
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ);
|
|
} else {
|
|
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, vtype == VTYPE_PYOBJ);
|
|
}
|
|
if (!pop) {
|
|
adjust_stack(emit, -1);
|
|
}
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) {
|
|
DEBUG_printf("pop_jump_if(cond=%u, label=" UINT_FMT ")\n", cond, label);
|
|
emit_native_jump_helper(emit, cond, label, true);
|
|
}
|
|
|
|
STATIC void emit_native_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) {
|
|
DEBUG_printf("jump_if_or_pop(cond=%u, label=" UINT_FMT ")\n", cond, label);
|
|
emit_native_jump_helper(emit, cond, label, false);
|
|
}
|
|
|
|
STATIC void emit_native_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
|
|
(void)except_depth;
|
|
emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR); // TODO properly
|
|
}
|
|
|
|
STATIC void emit_native_setup_with(emit_t *emit, mp_uint_t label) {
|
|
// the context manager is on the top of the stack
|
|
// stack: (..., ctx_mgr)
|
|
|
|
// get __exit__ method
|
|
vtype_kind_t vtype;
|
|
emit_access_stack(emit, 1, &vtype, REG_ARG_1); // arg1 = ctx_mgr
|
|
assert(vtype == VTYPE_PYOBJ);
|
|
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
|
|
emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___exit__, REG_ARG_2);
|
|
// stack: (..., ctx_mgr, __exit__, self)
|
|
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // self
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // __exit__
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // ctx_mgr
|
|
emit_post_push_reg(emit, vtype, REG_ARG_2); // __exit__
|
|
emit_post_push_reg(emit, vtype, REG_ARG_3); // self
|
|
// stack: (..., __exit__, self)
|
|
// REG_ARG_1=ctx_mgr
|
|
|
|
// get __enter__ method
|
|
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
|
|
emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, MP_QSTR___enter__, REG_ARG_2); // arg2 = method name
|
|
// stack: (..., __exit__, self, __enter__, self)
|
|
|
|
// call __enter__ method
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2); // pointer to items, including meth and self
|
|
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 0, REG_ARG_1, 0, REG_ARG_2);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__
|
|
// stack: (..., __exit__, self, as_value)
|
|
|
|
// need to commit stack because we may jump elsewhere
|
|
need_stack_settled(emit);
|
|
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_1, sizeof(nlr_buf_t) / sizeof(mp_uint_t)); // arg1 = pointer to nlr buf
|
|
emit_call(emit, MP_F_NLR_PUSH);
|
|
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label, true);
|
|
|
|
emit_access_stack(emit, sizeof(nlr_buf_t) / sizeof(mp_uint_t) + 1, &vtype, REG_RET); // access return value of __enter__
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // push return value of __enter__
|
|
// stack: (..., __exit__, self, as_value, nlr_buf, as_value)
|
|
}
|
|
|
|
STATIC void emit_native_setup_block(emit_t *emit, mp_uint_t label, int kind) {
|
|
if (kind == MP_EMIT_SETUP_BLOCK_WITH) {
|
|
emit_native_setup_with(emit, label);
|
|
} else {
|
|
// Set up except and finally
|
|
emit_native_pre(emit);
|
|
// need to commit stack because we may jump elsewhere
|
|
need_stack_settled(emit);
|
|
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_1, sizeof(nlr_buf_t) / sizeof(mp_uint_t)); // arg1 = pointer to nlr buf
|
|
emit_call(emit, MP_F_NLR_PUSH);
|
|
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label, true);
|
|
emit_post(emit);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_with_cleanup(emit_t *emit, mp_uint_t label) {
|
|
// note: label+1 is available as an auxiliary label
|
|
|
|
// stack: (..., __exit__, self, as_value, nlr_buf)
|
|
emit_native_pre(emit);
|
|
emit_call(emit, MP_F_NLR_POP);
|
|
adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t)) - 1);
|
|
// stack: (..., __exit__, self)
|
|
|
|
// call __exit__
|
|
emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none);
|
|
emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none);
|
|
emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none);
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5);
|
|
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2);
|
|
|
|
// jump to after with cleanup nlr_catch block
|
|
adjust_stack(emit, 1); // dummy nlr_buf.prev
|
|
emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE); // nlr_buf.ret_val = no exception
|
|
emit_native_jump(emit, label + 1);
|
|
|
|
// nlr_catch
|
|
emit_native_label_assign(emit, label);
|
|
|
|
// adjust stack counter for: __exit__, self, as_value
|
|
adjust_stack(emit, 3);
|
|
// stack: (..., __exit__, self, as_value, nlr_buf.prev, nlr_buf.ret_val)
|
|
|
|
vtype_kind_t vtype;
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // get the thrown value (exc)
|
|
adjust_stack(emit, -2); // discard nlr_buf.prev and as_value
|
|
// stack: (..., __exit__, self)
|
|
// REG_ARG_1=exc
|
|
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_2); // self
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_3); // __exit__
|
|
adjust_stack(emit, 1); // dummy nlr_buf.prev
|
|
emit_post_push_reg(emit, vtype, REG_ARG_1); // push exc to save it for later
|
|
emit_post_push_reg(emit, vtype, REG_ARG_3); // __exit__
|
|
emit_post_push_reg(emit, vtype, REG_ARG_2); // self
|
|
// stack: (..., exc, __exit__, self)
|
|
// REG_ARG_1=exc
|
|
|
|
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_ARG_2, REG_ARG_1, 0); // get type(exc)
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_2); // push type(exc)
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_ARG_1); // push exc value
|
|
emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none); // traceback info
|
|
// stack: (..., exc, __exit__, self, type(exc), exc, traceback)
|
|
|
|
// call __exit__ method
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 5);
|
|
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, 3, REG_ARG_1, 0, REG_ARG_2);
|
|
// stack: (..., exc)
|
|
|
|
// if REG_RET is true then we need to replace top-of-stack with None (swallow exception)
|
|
if (REG_ARG_1 != REG_RET) {
|
|
ASM_MOV_REG_REG(emit->as, REG_ARG_1, REG_RET);
|
|
}
|
|
emit_call(emit, MP_F_OBJ_IS_TRUE);
|
|
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label + 1, true);
|
|
|
|
// replace exc with None
|
|
emit_pre_pop_discard(emit);
|
|
emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)mp_const_none);
|
|
|
|
// end of with cleanup nlr_catch block
|
|
emit_native_label_assign(emit, label + 1);
|
|
}
|
|
|
|
STATIC void emit_native_end_finally(emit_t *emit) {
|
|
// logic:
|
|
// exc = pop_stack
|
|
// if exc == None: pass
|
|
// else: raise exc
|
|
// the check if exc is None is done in the MP_F_NATIVE_RAISE stub
|
|
vtype_kind_t vtype;
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_1); // get nlr_buf.ret_val
|
|
emit_pre_pop_discard(emit); // discard nlr_buf.prev
|
|
emit_call(emit, MP_F_NATIVE_RAISE);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_get_iter(emit_t *emit, bool use_stack) {
|
|
// perhaps the difficult one, as we want to rewrite for loops using native code
|
|
// in cases where we iterate over a Python object, can we use normal runtime calls?
|
|
|
|
vtype_kind_t vtype;
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
|
|
assert(vtype == VTYPE_PYOBJ);
|
|
if (use_stack) {
|
|
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_2, MP_OBJ_ITER_BUF_NSLOTS);
|
|
emit_call(emit, MP_F_NATIVE_GETITER);
|
|
} else {
|
|
// mp_getiter will allocate the iter_buf on the heap
|
|
ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0);
|
|
emit_call(emit, MP_F_NATIVE_GETITER);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_for_iter(emit_t *emit, mp_uint_t label) {
|
|
emit_native_pre(emit);
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_1, MP_OBJ_ITER_BUF_NSLOTS);
|
|
adjust_stack(emit, MP_OBJ_ITER_BUF_NSLOTS);
|
|
emit_call(emit, MP_F_NATIVE_ITERNEXT);
|
|
#ifdef NDEBUG
|
|
MP_STATIC_ASSERT(MP_OBJ_STOP_ITERATION == 0);
|
|
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label, false);
|
|
#else
|
|
ASM_MOV_REG_IMM(emit->as, REG_TEMP1, (mp_uint_t)MP_OBJ_STOP_ITERATION);
|
|
ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label);
|
|
#endif
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_for_iter_end(emit_t *emit) {
|
|
// adjust stack counter (we get here from for_iter ending, which popped the value for us)
|
|
emit_native_pre(emit);
|
|
adjust_stack(emit, -MP_OBJ_ITER_BUF_NSLOTS);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_pop_block(emit_t *emit) {
|
|
emit_native_pre(emit);
|
|
emit_call(emit, MP_F_NLR_POP);
|
|
adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t)) + 1);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_pop_except(emit_t *emit) {
|
|
(void)emit;
|
|
}
|
|
|
|
STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) {
|
|
vtype_kind_t vtype;
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
|
|
if (vtype == VTYPE_PYOBJ) {
|
|
emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
} else {
|
|
adjust_stack(emit, 1);
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"unary op %q not implemented", mp_unary_op_method_name[op]);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) {
|
|
DEBUG_printf("binary_op(" UINT_FMT ")\n", op);
|
|
vtype_kind_t vtype_lhs = peek_vtype(emit, 1);
|
|
vtype_kind_t vtype_rhs = peek_vtype(emit, 0);
|
|
if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) {
|
|
// for integers, inplace and normal ops are equivalent, so use just normal ops
|
|
if (MP_BINARY_OP_INPLACE_OR <= op && op <= MP_BINARY_OP_INPLACE_POWER) {
|
|
op += MP_BINARY_OP_OR - MP_BINARY_OP_INPLACE_OR;
|
|
}
|
|
|
|
#if N_X64 || N_X86
|
|
// special cases for x86 and shifting
|
|
if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_RSHIFT) {
|
|
#if N_X64
|
|
emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET);
|
|
#else
|
|
emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET);
|
|
#endif
|
|
if (op == MP_BINARY_OP_LSHIFT) {
|
|
ASM_LSL_REG(emit->as, REG_RET);
|
|
} else {
|
|
ASM_ASR_REG(emit->as, REG_RET);
|
|
}
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_RET);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// special cases for floor-divide and module because we dispatch to helper functions
|
|
if (op == MP_BINARY_OP_FLOOR_DIVIDE || op == MP_BINARY_OP_MODULO) {
|
|
emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_2, &vtype_lhs, REG_ARG_1);
|
|
if (op == MP_BINARY_OP_FLOOR_DIVIDE) {
|
|
emit_call(emit, MP_F_SMALL_INT_FLOOR_DIVIDE);
|
|
} else {
|
|
emit_call(emit, MP_F_SMALL_INT_MODULO);
|
|
}
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_RET);
|
|
return;
|
|
}
|
|
|
|
int reg_rhs = REG_ARG_3;
|
|
emit_pre_pop_reg_flexible(emit, &vtype_rhs, ®_rhs, REG_RET, REG_ARG_2);
|
|
emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2);
|
|
if (0) {
|
|
// dummy
|
|
#if !(N_X64 || N_X86)
|
|
} else if (op == MP_BINARY_OP_LSHIFT) {
|
|
ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs);
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
|
|
} else if (op == MP_BINARY_OP_RSHIFT) {
|
|
ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
|
|
#endif
|
|
} else if (op == MP_BINARY_OP_OR) {
|
|
ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
|
|
} else if (op == MP_BINARY_OP_XOR) {
|
|
ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
|
|
} else if (op == MP_BINARY_OP_AND) {
|
|
ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs);
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
|
|
} else if (op == MP_BINARY_OP_ADD) {
|
|
ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs);
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
|
|
} else if (op == MP_BINARY_OP_SUBTRACT) {
|
|
ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs);
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
|
|
} else if (op == MP_BINARY_OP_MULTIPLY) {
|
|
ASM_MUL_REG_REG(emit->as, REG_ARG_2, reg_rhs);
|
|
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
|
|
} else if (MP_BINARY_OP_LESS <= op && op <= MP_BINARY_OP_NOT_EQUAL) {
|
|
// comparison ops are (in enum order):
|
|
// MP_BINARY_OP_LESS
|
|
// MP_BINARY_OP_MORE
|
|
// MP_BINARY_OP_EQUAL
|
|
// MP_BINARY_OP_LESS_EQUAL
|
|
// MP_BINARY_OP_MORE_EQUAL
|
|
// MP_BINARY_OP_NOT_EQUAL
|
|
need_reg_single(emit, REG_RET, 0);
|
|
#if N_X64
|
|
asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET);
|
|
asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2);
|
|
static byte ops[6] = {
|
|
ASM_X64_CC_JL,
|
|
ASM_X64_CC_JG,
|
|
ASM_X64_CC_JE,
|
|
ASM_X64_CC_JLE,
|
|
ASM_X64_CC_JGE,
|
|
ASM_X64_CC_JNE,
|
|
};
|
|
asm_x64_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET);
|
|
#elif N_X86
|
|
asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET);
|
|
asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2);
|
|
static byte ops[6] = {
|
|
ASM_X86_CC_JL,
|
|
ASM_X86_CC_JG,
|
|
ASM_X86_CC_JE,
|
|
ASM_X86_CC_JLE,
|
|
ASM_X86_CC_JGE,
|
|
ASM_X86_CC_JNE,
|
|
};
|
|
asm_x86_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET);
|
|
#elif N_THUMB
|
|
asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs);
|
|
static uint16_t ops[6] = {
|
|
ASM_THUMB_OP_ITE_GE,
|
|
ASM_THUMB_OP_ITE_GT,
|
|
ASM_THUMB_OP_ITE_EQ,
|
|
ASM_THUMB_OP_ITE_GT,
|
|
ASM_THUMB_OP_ITE_GE,
|
|
ASM_THUMB_OP_ITE_EQ,
|
|
};
|
|
static byte ret[6] = { 0, 1, 1, 0, 1, 0, };
|
|
asm_thumb_op16(emit->as, ops[op - MP_BINARY_OP_LESS]);
|
|
asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS]);
|
|
asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS] ^ 1);
|
|
#elif N_ARM
|
|
asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs);
|
|
static uint ccs[6] = {
|
|
ASM_ARM_CC_LT,
|
|
ASM_ARM_CC_GT,
|
|
ASM_ARM_CC_EQ,
|
|
ASM_ARM_CC_LE,
|
|
ASM_ARM_CC_GE,
|
|
ASM_ARM_CC_NE,
|
|
};
|
|
asm_arm_setcc_reg(emit->as, REG_RET, ccs[op - MP_BINARY_OP_LESS]);
|
|
#elif N_XTENSA
|
|
static uint8_t ccs[6] = {
|
|
ASM_XTENSA_CC_LT,
|
|
0x80 | ASM_XTENSA_CC_LT, // for GT we'll swap args
|
|
ASM_XTENSA_CC_EQ,
|
|
0x80 | ASM_XTENSA_CC_GE, // for LE we'll swap args
|
|
ASM_XTENSA_CC_GE,
|
|
ASM_XTENSA_CC_NE,
|
|
};
|
|
uint8_t cc = ccs[op - MP_BINARY_OP_LESS];
|
|
if ((cc & 0x80) == 0) {
|
|
asm_xtensa_setcc_reg_reg_reg(emit->as, cc, REG_RET, REG_ARG_2, reg_rhs);
|
|
} else {
|
|
asm_xtensa_setcc_reg_reg_reg(emit->as, cc & ~0x80, REG_RET, reg_rhs, REG_ARG_2);
|
|
}
|
|
#else
|
|
#error not implemented
|
|
#endif
|
|
emit_post_push_reg(emit, VTYPE_BOOL, REG_RET);
|
|
} else {
|
|
// TODO other ops not yet implemented
|
|
adjust_stack(emit, 1);
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"binary op %q not implemented", mp_binary_op_method_name[op]);
|
|
}
|
|
} else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) {
|
|
emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2);
|
|
bool invert = false;
|
|
if (op == MP_BINARY_OP_NOT_IN) {
|
|
invert = true;
|
|
op = MP_BINARY_OP_IN;
|
|
} else if (op == MP_BINARY_OP_IS_NOT) {
|
|
invert = true;
|
|
op = MP_BINARY_OP_IS;
|
|
}
|
|
emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1);
|
|
if (invert) {
|
|
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
|
|
emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1);
|
|
}
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
} else {
|
|
adjust_stack(emit, -1);
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"can't do binary op between '%q' and '%q'",
|
|
vtype_to_qstr(vtype_lhs), vtype_to_qstr(vtype_rhs));
|
|
}
|
|
}
|
|
|
|
#if MICROPY_PY_BUILTINS_SLICE
|
|
STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args);
|
|
#endif
|
|
|
|
STATIC void emit_native_build(emit_t *emit, mp_uint_t n_args, int kind) {
|
|
// for viper: call runtime, with types of args
|
|
// if wrapped in byte_array, or something, allocates memory and fills it
|
|
MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_F_BUILD_TUPLE);
|
|
MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_F_BUILD_LIST);
|
|
MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_F_BUILD_MAP);
|
|
MP_STATIC_ASSERT(MP_F_BUILD_TUPLE + MP_EMIT_BUILD_SET == MP_F_BUILD_SET);
|
|
#if MICROPY_PY_BUILTINS_SLICE
|
|
if (kind == MP_EMIT_BUILD_SLICE) {
|
|
emit_native_build_slice(emit, n_args);
|
|
return;
|
|
}
|
|
#endif
|
|
emit_native_pre(emit);
|
|
if (kind == MP_EMIT_BUILD_TUPLE || kind == MP_EMIT_BUILD_LIST || kind == MP_EMIT_BUILD_SET) {
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
|
|
}
|
|
emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE + kind, n_args, REG_ARG_1);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple/list/map/set
|
|
}
|
|
|
|
STATIC void emit_native_store_map(emit_t *emit) {
|
|
vtype_kind_t vtype_key, vtype_value, vtype_map;
|
|
emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map
|
|
assert(vtype_key == VTYPE_PYOBJ);
|
|
assert(vtype_value == VTYPE_PYOBJ);
|
|
assert(vtype_map == VTYPE_PYOBJ);
|
|
emit_call(emit, MP_F_STORE_MAP);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map
|
|
}
|
|
|
|
#if MICROPY_PY_BUILTINS_SLICE
|
|
STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) {
|
|
DEBUG_printf("build_slice %d\n", n_args);
|
|
if (n_args == 2) {
|
|
vtype_kind_t vtype_start, vtype_stop;
|
|
emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop
|
|
assert(vtype_start == VTYPE_PYOBJ);
|
|
assert(vtype_stop == VTYPE_PYOBJ);
|
|
emit_call_with_imm_arg(emit, MP_F_NEW_SLICE, (mp_uint_t)mp_const_none, REG_ARG_3); // arg3 = step
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
} else {
|
|
assert(n_args == 3);
|
|
vtype_kind_t vtype_start, vtype_stop, vtype_step;
|
|
emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step
|
|
assert(vtype_start == VTYPE_PYOBJ);
|
|
assert(vtype_stop == VTYPE_PYOBJ);
|
|
assert(vtype_step == VTYPE_PYOBJ);
|
|
emit_call(emit, MP_F_NEW_SLICE);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
STATIC void emit_native_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_index) {
|
|
mp_fun_kind_t f;
|
|
if (kind == SCOPE_LIST_COMP) {
|
|
vtype_kind_t vtype_item;
|
|
emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
|
|
assert(vtype_item == VTYPE_PYOBJ);
|
|
f = MP_F_LIST_APPEND;
|
|
#if MICROPY_PY_BUILTINS_SET
|
|
} else if (kind == SCOPE_SET_COMP) {
|
|
vtype_kind_t vtype_item;
|
|
emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
|
|
assert(vtype_item == VTYPE_PYOBJ);
|
|
f = MP_F_STORE_SET;
|
|
#endif
|
|
} else {
|
|
// SCOPE_DICT_COMP
|
|
vtype_kind_t vtype_key, vtype_value;
|
|
emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3);
|
|
assert(vtype_key == VTYPE_PYOBJ);
|
|
assert(vtype_value == VTYPE_PYOBJ);
|
|
f = MP_F_STORE_MAP;
|
|
}
|
|
vtype_kind_t vtype_collection;
|
|
emit_access_stack(emit, collection_index, &vtype_collection, REG_ARG_1);
|
|
assert(vtype_collection == VTYPE_PYOBJ);
|
|
emit_call(emit, f);
|
|
emit_post(emit);
|
|
}
|
|
|
|
STATIC void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) {
|
|
DEBUG_printf("unpack_sequence %d\n", n_args);
|
|
vtype_kind_t vtype_base;
|
|
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
|
|
assert(vtype_base == VTYPE_PYOBJ);
|
|
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr
|
|
emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args
|
|
}
|
|
|
|
STATIC void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) {
|
|
DEBUG_printf("unpack_ex %d %d\n", n_left, n_right);
|
|
vtype_kind_t vtype_base;
|
|
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
|
|
assert(vtype_base == VTYPE_PYOBJ);
|
|
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr
|
|
emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right
|
|
}
|
|
|
|
STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
|
|
// call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them
|
|
emit_native_pre(emit);
|
|
if (n_pos_defaults == 0 && n_kw_defaults == 0) {
|
|
emit_call_with_3_imm_args_and_first_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1, (mp_uint_t)MP_OBJ_NULL, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3);
|
|
} else {
|
|
vtype_kind_t vtype_def_tuple, vtype_def_dict;
|
|
emit_pre_pop_reg_reg(emit, &vtype_def_dict, REG_ARG_3, &vtype_def_tuple, REG_ARG_2);
|
|
assert(vtype_def_tuple == VTYPE_PYOBJ);
|
|
assert(vtype_def_dict == VTYPE_PYOBJ);
|
|
emit_call_with_imm_arg_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1);
|
|
}
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
|
|
emit_native_pre(emit);
|
|
if (n_pos_defaults == 0 && n_kw_defaults == 0) {
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over);
|
|
ASM_MOV_REG_IMM(emit->as, REG_ARG_2, n_closed_over);
|
|
} else {
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over + 2);
|
|
ASM_MOV_REG_IMM(emit->as, REG_ARG_2, 0x100 | n_closed_over);
|
|
}
|
|
ASM_MOV_REG_ALIGNED_IMM(emit->as, REG_ARG_1, (mp_uint_t)scope->raw_code);
|
|
ASM_CALL_IND(emit->as, mp_fun_table[MP_F_MAKE_CLOSURE_FROM_RAW_CODE], MP_F_MAKE_CLOSURE_FROM_RAW_CODE);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
|
|
STATIC void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
|
|
DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags);
|
|
|
|
// TODO: in viper mode, call special runtime routine with type info for args,
|
|
// and wanted type info for return, to remove need for boxing/unboxing
|
|
|
|
emit_native_pre(emit);
|
|
vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword);
|
|
if (vtype_fun == VTYPE_BUILTIN_CAST) {
|
|
// casting operator
|
|
assert(n_positional == 1 && n_keyword == 0);
|
|
assert(!star_flags);
|
|
DEBUG_printf(" cast to %d\n", vtype_fun);
|
|
vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm;
|
|
switch (peek_vtype(emit, 0)) {
|
|
case VTYPE_PYOBJ: {
|
|
vtype_kind_t vtype;
|
|
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
|
|
emit_pre_pop_discard(emit);
|
|
emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, vtype_cast, REG_ARG_2); // arg2 = type
|
|
emit_post_push_reg(emit, vtype_cast, REG_RET);
|
|
break;
|
|
}
|
|
case VTYPE_BOOL:
|
|
case VTYPE_INT:
|
|
case VTYPE_UINT:
|
|
case VTYPE_PTR:
|
|
case VTYPE_PTR8:
|
|
case VTYPE_PTR16:
|
|
case VTYPE_PTR32:
|
|
case VTYPE_PTR_NONE:
|
|
emit_fold_stack_top(emit, REG_ARG_1);
|
|
emit_post_top_set_vtype(emit, vtype_cast);
|
|
break;
|
|
default:
|
|
// this can happen when casting a cast: int(int)
|
|
mp_raise_NotImplementedError("casting");
|
|
}
|
|
} else {
|
|
assert(vtype_fun == VTYPE_PYOBJ);
|
|
if (star_flags) {
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 3); // pointer to args
|
|
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 0, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
} else {
|
|
if (n_positional != 0 || n_keyword != 0) {
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args
|
|
}
|
|
emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function
|
|
emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
|
|
if (star_flags) {
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 4); // pointer to args
|
|
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 1, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
} else {
|
|
emit_native_pre(emit);
|
|
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self
|
|
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2);
|
|
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
|
}
|
|
}
|
|
|
|
STATIC void emit_native_return_value(emit_t *emit) {
|
|
DEBUG_printf("return_value\n");
|
|
if (emit->do_viper_types) {
|
|
if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) {
|
|
emit_pre_pop_discard(emit);
|
|
if (emit->return_vtype == VTYPE_PYOBJ) {
|
|
ASM_MOV_REG_IMM(emit->as, REG_RET, (mp_uint_t)mp_const_none);
|
|
} else {
|
|
ASM_MOV_REG_IMM(emit->as, REG_RET, 0);
|
|
}
|
|
} else {
|
|
vtype_kind_t vtype;
|
|
emit_pre_pop_reg(emit, &vtype, REG_RET);
|
|
if (vtype != emit->return_vtype) {
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
|
"return expected '%q' but got '%q'",
|
|
vtype_to_qstr(emit->return_vtype), vtype_to_qstr(vtype));
|
|
}
|
|
}
|
|
} else {
|
|
vtype_kind_t vtype;
|
|
emit_pre_pop_reg(emit, &vtype, REG_RET);
|
|
assert(vtype == VTYPE_PYOBJ);
|
|
}
|
|
emit->last_emit_was_return_value = true;
|
|
ASM_EXIT(emit->as);
|
|
}
|
|
|
|
STATIC void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) {
|
|
assert(n_args == 1);
|
|
vtype_kind_t vtype_exc;
|
|
emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise
|
|
if (vtype_exc != VTYPE_PYOBJ) {
|
|
EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "must raise an object");
|
|
}
|
|
// TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type))
|
|
emit_call(emit, MP_F_NATIVE_RAISE);
|
|
}
|
|
|
|
STATIC void emit_native_yield(emit_t *emit, int kind) {
|
|
// not supported (for now)
|
|
(void)emit;
|
|
(void)kind;
|
|
mp_raise_NotImplementedError("native yield");
|
|
}
|
|
|
|
STATIC void emit_native_start_except_handler(emit_t *emit) {
|
|
// This instruction follows an nlr_pop, so the stack counter is back to zero, when really
|
|
// it should be up by a whole nlr_buf_t. We then want to pop the nlr_buf_t here, but save
|
|
// the first 2 elements, so we can get the thrown value.
|
|
adjust_stack(emit, 1);
|
|
vtype_kind_t vtype_nlr;
|
|
emit_pre_pop_reg(emit, &vtype_nlr, REG_ARG_1); // get the thrown value
|
|
emit_pre_pop_discard(emit); // discard the linked-list pointer in the nlr_buf
|
|
emit_post_push_reg_reg_reg(emit, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1); // push the 3 exception items
|
|
}
|
|
|
|
STATIC void emit_native_end_except_handler(emit_t *emit) {
|
|
adjust_stack(emit, -1);
|
|
}
|
|
|
|
const emit_method_table_t EXPORT_FUN(method_table) = {
|
|
emit_native_set_native_type,
|
|
emit_native_start_pass,
|
|
emit_native_end_pass,
|
|
emit_native_last_emit_was_return_value,
|
|
emit_native_adjust_stack_size,
|
|
emit_native_set_source_line,
|
|
|
|
{
|
|
emit_native_load_local,
|
|
emit_native_load_global,
|
|
},
|
|
{
|
|
emit_native_store_local,
|
|
emit_native_store_global,
|
|
},
|
|
{
|
|
emit_native_delete_local,
|
|
emit_native_delete_global,
|
|
},
|
|
|
|
emit_native_label_assign,
|
|
emit_native_import,
|
|
emit_native_load_const_tok,
|
|
emit_native_load_const_small_int,
|
|
emit_native_load_const_str,
|
|
emit_native_load_const_obj,
|
|
emit_native_load_null,
|
|
emit_native_load_method,
|
|
emit_native_load_build_class,
|
|
emit_native_subscr,
|
|
emit_native_attr,
|
|
emit_native_dup_top,
|
|
emit_native_dup_top_two,
|
|
emit_native_pop_top,
|
|
emit_native_rot_two,
|
|
emit_native_rot_three,
|
|
emit_native_jump,
|
|
emit_native_pop_jump_if,
|
|
emit_native_jump_if_or_pop,
|
|
emit_native_unwind_jump,
|
|
emit_native_setup_block,
|
|
emit_native_with_cleanup,
|
|
emit_native_end_finally,
|
|
emit_native_get_iter,
|
|
emit_native_for_iter,
|
|
emit_native_for_iter_end,
|
|
emit_native_pop_block,
|
|
emit_native_pop_except,
|
|
emit_native_unary_op,
|
|
emit_native_binary_op,
|
|
emit_native_build,
|
|
emit_native_store_map,
|
|
emit_native_store_comp,
|
|
emit_native_unpack_sequence,
|
|
emit_native_unpack_ex,
|
|
emit_native_make_function,
|
|
emit_native_make_closure,
|
|
emit_native_call_function,
|
|
emit_native_call_method,
|
|
emit_native_return_value,
|
|
emit_native_raise_varargs,
|
|
emit_native_yield,
|
|
|
|
emit_native_start_except_handler,
|
|
emit_native_end_except_handler,
|
|
};
|
|
|
|
#endif
|