circuitpython/esp8266/modpybhspi.c
Paul Sokolovsky dba40afa70 esp8266/modmachine: Simplify SPI class implementation multiplexing.
modpybhspi now does the needed multiplexing, calling out to modpybspi
(bitbanging SPI) for suitable peripheral ID's. modmachinespi (previous
multiplexer class) thus not needed and removed.

modpybhspi also updated to following standard SPI peripheral naming:
SPI0 is used for FlashROM and thus not supported so far. SPI1 is available
for users, and thus needs to be instantiated as:

spi = machine.SPI(1, ...)
2016-09-04 20:33:11 +03:00

225 lines
8.0 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "ets_sys.h"
#include "etshal.h"
#include "ets_alt_task.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "extmod/machine_spi.h"
#include "hspi.h"
mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args,
size_t n_kw, const mp_obj_t *args);
typedef struct _pyb_hspi_obj_t {
mp_obj_base_t base;
uint32_t baudrate;
uint8_t polarity;
uint8_t phase;
} pyb_hspi_obj_t;
STATIC void hspi_transfer(mp_obj_base_t *self_in, size_t src_len, const uint8_t *src_buf, size_t dest_len, uint8_t *dest_buf) {
(void)self_in;
if (dest_len == 0) {
// fast case when we only need to write data
size_t chunk_size = 1024;
size_t count = src_len / chunk_size;
size_t i = 0;
for (size_t j = 0; j < count; ++j) {
for (size_t k = 0; k < chunk_size; ++k) {
spi_tx8fast(HSPI, src_buf[i]);
++i;
}
ets_loop_iter();
}
while (i < src_len) {
spi_tx8fast(HSPI, src_buf[i]);
++i;
}
} else {
// we need to read and write data
// Process data in chunks, let the pending tasks run in between
size_t chunk_size = 1024; // TODO this should depend on baudrate
size_t count = dest_len / chunk_size;
size_t i = 0;
for (size_t j = 0; j < count; ++j) {
for (size_t k = 0; k < chunk_size; ++k) {
uint32_t data_out;
if (src_len == 1) {
data_out = src_buf[0];
} else {
data_out = src_buf[i];
}
dest_buf[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, data_out, 8, 0);
++i;
}
ets_loop_iter();
}
while (i < dest_len) {
uint32_t data_out;
if (src_len == 1) {
data_out = src_buf[0];
} else {
data_out = src_buf[i];
}
dest_buf[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, data_out, 8, 0);
++i;
}
}
}
/******************************************************************************/
// MicroPython bindings for HSPI
STATIC void pyb_hspi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_hspi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "HSPI(id=1, baudrate=%u, polarity=%u, phase=%u)",
self->baudrate, self->polarity, self->phase);
}
STATIC void pyb_hspi_init_helper(pyb_hspi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args),
allowed_args, args);
if (args[ARG_baudrate].u_int != -1) {
self->baudrate = args[ARG_baudrate].u_int;
}
if (args[ARG_polarity].u_int != -1) {
self->polarity = args[ARG_polarity].u_int;
}
if (args[ARG_phase].u_int != -1) {
self->phase = args[ARG_phase].u_int;
}
if (self->baudrate == 80000000L) {
// Special case for full speed.
spi_init_gpio(HSPI, SPI_CLK_80MHZ_NODIV);
spi_clock(HSPI, 0, 0);
} else if (self->baudrate > 40000000L) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"impossible baudrate"));
} else {
uint32_t divider = 40000000L / self->baudrate;
uint16_t prediv = MIN(divider, SPI_CLKDIV_PRE + 1);
uint16_t cntdiv = (divider / prediv) * 2; // cntdiv has to be even
if (cntdiv > SPI_CLKCNT_N + 1 || cntdiv == 0 || prediv == 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError,
"impossible baudrate"));
}
self->baudrate = 80000000L / (prediv * cntdiv);
spi_init_gpio(HSPI, SPI_CLK_USE_DIV);
spi_clock(HSPI, prediv, cntdiv);
}
// TODO: Make the byte order configurable too (discuss param names)
spi_tx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
spi_rx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
CLEAR_PERI_REG_MASK(SPI_USER(HSPI), SPI_FLASH_MODE | SPI_USR_MISO |
SPI_USR_ADDR | SPI_USR_COMMAND | SPI_USR_DUMMY);
// Clear Dual or Quad lines transmission mode
CLEAR_PERI_REG_MASK(SPI_CTRL(HSPI), SPI_QIO_MODE | SPI_DIO_MODE |
SPI_DOUT_MODE | SPI_QOUT_MODE);
spi_mode(HSPI, self->phase, self->polarity);
}
mp_obj_t pyb_hspi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 1, true);
mp_int_t id = -1;
if (n_args > 0) {
id = mp_obj_get_int(args[0]);
}
if (id == -1) {
// Multiplex to bitbanging SPI
if (n_args > 0) {
args++;
}
return pyb_spi_make_new(type, 0, n_kw, args);
}
if (id != 1) {
// FlashROM is on SPI0, so far we don't support its usage
mp_raise_ValueError("");
}
pyb_hspi_obj_t *self = m_new_obj(pyb_hspi_obj_t);
self->base.type = &pyb_hspi_type;
// set defaults
self->baudrate = 80000000L;
self->polarity = 0;
self->phase = 0;
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_hspi_init_helper(self, n_args, args, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t pyb_hspi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_hspi_init_helper(args[0], n_args - 1, args + 1, kw_args);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_hspi_init_obj, 1, pyb_hspi_init);
STATIC const mp_rom_map_elem_t pyb_hspi_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_hspi_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_hspi_locals_dict, pyb_hspi_locals_dict_table);
STATIC const mp_machine_spi_p_t pyb_hspi_p = {
.transfer = hspi_transfer,
};
const mp_obj_type_t pyb_hspi_type = {
{ &mp_type_type },
.name = MP_QSTR_HSPI,
.print = pyb_hspi_print,
.make_new = pyb_hspi_make_new,
.protocol = &pyb_hspi_p,
.locals_dict = (mp_obj_dict_t*)&pyb_hspi_locals_dict,
};