circuitpython/ports/mimxrt10xx/common-hal/audiobusio/__init__.c

465 lines
17 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/runtime.h"
#include "common-hal/audiobusio/__init__.h"
#include "shared-module/audiocore/__init__.h"
#define SAI_CLOCK_SOURCE_SELECT (2U)
#define SAI_CLOCK_SOURCE_DIVIDER (63U)
#define SAI_CLOCK_SOURCE_PRE_DIVIDER (0U)
#define SAI_CLOCK_FREQ (CLOCK_GetFreq(kCLOCK_AudioPllClk) / (SAI_CLOCK_SOURCE_DIVIDER + 1U) / \
(SAI_CLOCK_SOURCE_PRE_DIVIDER + 1U))
#define AUDIO_BUFFER_FRAME_COUNT (128) // in uint32_t; there are 4, giving 2048 bytes. In all they hold 10ms @ stereo 16-bit 48kHz before all buffers drain
/*
* AUDIO PLL setting: Frequency = Fref * (DIV_SELECT + NUM / DENOM)
* = 24 * (32 + 96 / 125) = 24 * (32.768)
* = 786.432 MHz = 48kHz * 16384
*
* This default clocking is used during initial configuration; it also works well for
* frequencies that evenly divide 192kHz, such as 8/12/24/48kHz. However, it doesn't work
* well for 44.1/22/11kHz, so there's the possibility of using a different
* setting when playing a particular sample.
*/
const clock_audio_pll_config_t audioPllConfig = {
.loopDivider = 32, /* PLL loop divider. Valid range for DIV_SELECT divider value: 27~54. */
.postDivider = 1, /* Divider after the PLL, should only be 1, 2, 4, 8, 16. */
.numerator = 96, /* 30 bit numerator of fractional loop divider. */
.denominator = 125, /* 30 bit denominator of fractional loop divider */
};
static I2S_Type *const i2s_instances[] = I2S_BASE_PTRS;
static uint8_t i2s_in_use, i2s_playing;
static I2S_Type *SAI_GetPeripheral(int idx) {
if (idx < 0 || idx >= (int)MP_ARRAY_SIZE(i2s_instances)) {
return NULL;
}
return i2s_instances[idx];
}
static int SAI_GetInstance(I2S_Type *peripheral) {
for (size_t i = 0; i < MP_ARRAY_SIZE(i2s_instances); i++) { if (peripheral == i2s_instances[i]) {
return i;
}
}
return -1;
}
static bool i2s_clock_off(I2S_Type *peripheral) {
int index = SAI_GetInstance(peripheral);
switch (index) {
#if defined(SAI0)
case 0:
CLOCK_DisableClock(kCLOCK_Sai0);
return true;
#endif
#if defined(SAI1)
case 1:
CLOCK_DisableClock(kCLOCK_Sai1);
return true;
#endif
#if defined(SAI2)
case 2:
CLOCK_DisableClock(kCLOCK_Sai2);
return true;
#endif
#if defined(SAI3)
case 3:
CLOCK_DisableClock(kCLOCK_Sai3);
return true;
#endif
#if defined(SAI4)
case 4:
CLOCK_DisableClock(kCLOCK_Sai4);
return true;
#endif
#if defined(SAI5)
case 5:
CLOCK_DisableClock(kCLOCK_Sai5);
return true;
#endif
#if defined(SAI6)
case 6:
CLOCK_DisableClock(kCLOCK_Sai6);
return true;
#endif
#if defined(SAI7)
case 7:
CLOCK_DisableClock(kCLOCK_Sai7);
return true;
#endif
}
return false;
}
static bool i2s_clocking(I2S_Type *peripheral) {
int index = SAI_GetInstance(peripheral);
switch (index) {
#if defined(SAI0)
case 0:
CLOCK_SetDiv(kCLOCK_Sai0PreDiv, SAI_CLOCK_SOURCE_PRE_DIVIDER);
CLOCK_SetDiv(kCLOCK_Sai0Div, SAI_CLOCK_SOURCE_DIVIDER);
CLOCK_SetMux(kCLOCK_Sai0Mux, SAI_CLOCK_SOURCE_SELECT);
CLOCK_EnableClock(kCLOCK_Sai0);
return true;
#endif
#if defined(SAI1)
case 1:
CLOCK_SetDiv(kCLOCK_Sai1PreDiv, SAI_CLOCK_SOURCE_PRE_DIVIDER);
CLOCK_SetDiv(kCLOCK_Sai1Div, SAI_CLOCK_SOURCE_DIVIDER);
CLOCK_SetMux(kCLOCK_Sai1Mux, SAI_CLOCK_SOURCE_SELECT);
CLOCK_EnableClock(kCLOCK_Sai1);
return true;
#endif
#if defined(SAI2)
case 2:
CLOCK_SetDiv(kCLOCK_Sai2PreDiv, SAI_CLOCK_SOURCE_PRE_DIVIDER);
CLOCK_SetDiv(kCLOCK_Sai2Div, SAI_CLOCK_SOURCE_DIVIDER);
CLOCK_SetMux(kCLOCK_Sai2Mux, SAI_CLOCK_SOURCE_SELECT);
CLOCK_EnableClock(kCLOCK_Sai2);
return true;
#endif
#if defined(SAI3)
case 3:
CLOCK_SetDiv(kCLOCK_Sai3PreDiv, SAI_CLOCK_SOURCE_PRE_DIVIDER);
CLOCK_SetDiv(kCLOCK_Sai3Div, SAI_CLOCK_SOURCE_DIVIDER);
CLOCK_SetMux(kCLOCK_Sai3Mux, SAI_CLOCK_SOURCE_SELECT);
CLOCK_EnableClock(kCLOCK_Sai3);
return true;
#endif
#if defined(SAI4)
case 4:
CLOCK_SetDiv(kCLOCK_Sai4PreDiv, SAI_CLOCK_SOURCE_PRE_DIVIDER);
CLOCK_SetDiv(kCLOCK_Sai4Div, SAI_CLOCK_SOURCE_DIVIDER);
CLOCK_SetMux(kCLOCK_Sai4Mux, SAI_CLOCK_SOURCE_SELECT);
CLOCK_EnableClock(kCLOCK_Sai4);
return true;
#endif
#if defined(SAI5)
case 5:
CLOCK_SetDiv(kCLOCK_Sai5PreDiv, SAI_CLOCK_SOURCE_PRE_DIVIDER);
CLOCK_SetDiv(kCLOCK_Sai5Div, SAI_CLOCK_SOURCE_DIVIDER);
CLOCK_SetMux(kCLOCK_Sai5Mux, SAI_CLOCK_SOURCE_SELECT);
CLOCK_EnableClock(kCLOCK_Sai5);
return true;
#endif
#if defined(SAI6)
case 6:
CLOCK_SetDiv(kCLOCK_Sai6PreDiv, SAI_CLOCK_SOURCE_PRE_DIVIDER);
CLOCK_SetDiv(kCLOCK_Sai6Div, SAI_CLOCK_SOURCE_DIVIDER);
CLOCK_SetMux(kCLOCK_Sai6Mux, SAI_CLOCK_SOURCE_SELECT);
CLOCK_EnableClock(kCLOCK_Sai6);
return true;
#endif
#if defined(SAI7)
case 7:
CLOCK_SetDiv(kCLOCK_Sai7PreDiv, SAI_CLOCK_SOURCE_PRE_DIVIDER);
CLOCK_SetDiv(kCLOCK_Sai7Div, SAI_CLOCK_SOURCE_DIVIDER);
CLOCK_SetMux(kCLOCK_Sai7Mux, SAI_CLOCK_SOURCE_SELECT);
CLOCK_EnableClock(kCLOCK_Sai7);
return true;
#endif
}
return false;
}
static bool i2s_queue_available(i2s_t *self) {
return !self->handle.saiQueue[self->handle.queueUser].data;
}
static void i2s_fill_buffer(i2s_t *self) {
if (!self->peripheral) {
return;
}
while (i2s_queue_available(self)) {
uint32_t *buffer = self->buffers[self->buffer_idx];
uint32_t *ptr = buffer, *end = buffer + AUDIO_BUFFER_FRAME_COUNT;
self->buffer_idx = (self->buffer_idx + 1) % SAI_XFER_QUEUE_SIZE;
while (self->playing && !self->paused && ptr < end) {
if (self->sample_data == self->sample_end) {
if (self->stopping) {
// non-looping sample, previously returned GET_BUFFER_DONE
self->playing = false;
break;
}
uint32_t sample_buffer_length;
audioio_get_buffer_result_t get_buffer_result =
audiosample_get_buffer(self->sample, false, 0,
&self->sample_data, &sample_buffer_length);
self->sample_end = self->sample_data + sample_buffer_length;
if (get_buffer_result == GET_BUFFER_DONE) {
if (self->loop) {
audiosample_reset_buffer(self->sample, false, 0);
} else {
self->stopping = true;
}
}
if (get_buffer_result == GET_BUFFER_ERROR || sample_buffer_length == 0) {
self->stopping = true;
}
}
size_t input_bytecount = self->sample_end - self->sample_data;
size_t bytes_per_input_frame = self->channel_count * self->bytes_per_sample;
size_t framecount = MIN((size_t)(end - ptr), input_bytecount / bytes_per_input_frame);
#define SAMPLE_TYPE(is_signed, channel_count, bytes_per_sample) ((is_signed) | ((channel_count) << 1) | ((bytes_per_sample) << 3))
switch (SAMPLE_TYPE(self->samples_signed, self->channel_count, self->bytes_per_sample)) {
case SAMPLE_TYPE(true, 2, 2):
memcpy(ptr, self->sample_data, 4 * framecount);
break;
case SAMPLE_TYPE(false, 2, 2):
audiosample_convert_u16s_s16s((int16_t *)ptr, (uint16_t *)(void *)self->sample_data, framecount);
break;
case SAMPLE_TYPE(true, 1, 2):
audiosample_convert_s16m_s16s((int16_t *)ptr, (int16_t *)(void *)self->sample_data, framecount);
break;
case SAMPLE_TYPE(false, 1, 2):
audiosample_convert_u16m_s16s((int16_t *)ptr, (uint16_t *)(void *)self->sample_data, framecount);
break;
case SAMPLE_TYPE(true, 2, 1):
audiosample_convert_s8s_s16s((int16_t *)ptr, (int8_t *)(void *)self->sample_data, framecount);
memcpy(ptr, self->sample_data, 4 * framecount);
break;
case SAMPLE_TYPE(false, 2, 1):
audiosample_convert_u8s_s16s((int16_t *)ptr, (uint8_t *)(void *)self->sample_data, framecount);
break;
case SAMPLE_TYPE(true, 1, 1):
audiosample_convert_s8m_s16s((int16_t *)ptr, (int8_t *)(void *)self->sample_data, framecount);
break;
case SAMPLE_TYPE(false, 1, 1):
audiosample_convert_u8m_s16s((int16_t *)ptr, (uint8_t *)(void *)self->sample_data, framecount);
break;
}
self->sample_data += bytes_per_input_frame * framecount; // in bytes
ptr += framecount; // in frames
}
// Fill any remaining portion of the buffer with 'no sound'
memset(ptr, 0, (end - ptr) * sizeof(uint32_t));
sai_transfer_t xfer = {
.data = (uint8_t *)buffer,
.dataSize = AUDIO_BUFFER_FRAME_COUNT * sizeof(uint32_t),
};
int r = SAI_TransferSendNonBlocking(self->peripheral, &self->handle, &xfer);
if (r != kStatus_Success) {
mp_printf(&mp_plat_print, "transfer returned %d\n", (int)r);
}
}
}
static void i2s_callback_fun(void *self_in) {
i2s_t *self = self_in;
i2s_fill_buffer(self);
}
static void i2s_transfer_callback(I2S_Type *base, sai_handle_t *handle, status_t status, void *self_in) {
i2s_t *self = self_in;
if (status == kStatus_SAI_TxIdle) {
// a block has been finished
background_callback_add(&self->callback, i2s_callback_fun, self_in);
}
}
void port_i2s_initialize(i2s_t *self, int instance, sai_transceiver_t *config) {
if (!i2s_in_use) {
// need to set audio pll up!
/* DeInit Audio PLL. */
CLOCK_DeinitAudioPll();
/* Bypass Audio PLL. */
CLOCK_SetPllBypass(CCM_ANALOG, kCLOCK_PllAudio, 1);
/* Set divider for Audio PLL. */
CCM_ANALOG->MISC2 &= ~CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
CCM_ANALOG->MISC2 &= ~CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK;
/* Enable Audio PLL output. */
CCM_ANALOG->PLL_AUDIO |= CCM_ANALOG_PLL_AUDIO_ENABLE_MASK;
CLOCK_InitAudioPll(&audioPllConfig);
}
I2S_Type *peripheral = SAI_GetPeripheral(instance);
if (!peripheral) {
mp_raise_ValueError_varg(translate("Invalid %q"), MP_QSTR_I2SOut);
}
if (i2s_in_use & (1 << instance)) {
mp_raise_ValueError_varg(translate("%q in use"), MP_QSTR_I2SOut);
}
if (!i2s_clocking(peripheral)) {
mp_raise_ValueError_varg(translate("Invalid %q"), MP_QSTR_I2SOut);
}
for (size_t i = 0; i < MP_ARRAY_SIZE(self->buffers); i++) {
self->buffers[i] = m_malloc(AUDIO_BUFFER_FRAME_COUNT * sizeof(uint32_t));
}
self->peripheral = peripheral;
SAI_Init(self->peripheral);
SAI_TransferTxCreateHandle(peripheral, &self->handle, i2s_transfer_callback, (void *)self);
SAI_TransferTxSetConfig(peripheral, &self->handle, config);
self->sample_rate = 0;
i2s_in_use |= (1 << instance);
}
bool port_i2s_deinited(i2s_t *self) {
return !self->peripheral;
}
void port_i2s_deinit(i2s_t *self) {
if (port_i2s_deinited(self)) {
return;
}
SAI_TransferAbortSend(self->peripheral, &self->handle);
i2s_clock_off(self->peripheral);
uint32_t instance_mask = 1 << SAI_GetInstance(self->peripheral);
i2s_in_use &= ~instance_mask;
i2s_playing &= ~instance_mask;
if (!i2s_in_use) {
CCM_ANALOG->PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_BYPASS_MASK | CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK | CCM_ANALOG_PLL_AUDIO_BYPASS_CLK_SRC(kCLOCK_PllClkSrc24M);
}
self->peripheral = NULL;
for (size_t i = 0; i < MP_ARRAY_SIZE(self->buffers); i++) {
self->buffers[i] = NULL;
}
}
static uint32_t gcd(uint32_t a, uint32_t b) {
while (b) {
uint32_t tmp = a % b;
a = b;
b = tmp;
}
return a;
}
static void set_sai_clocking_for_sample_rate(uint32_t sample_rate) {
mp_arg_validate_int_range((mp_uint_t)sample_rate, 4000, 192000, MP_QSTR_sample_rate);
uint32_t target_rate = sample_rate;
// ensure the PWM rate of MQS will be adequately high
while (target_rate < 175000) {
target_rate <<= 1;
}
target_rate *= 4096; // various prescalers divide by this much
uint32_t div = gcd(target_rate % 24000000, 24000000);
clock_audio_pll_config_t config = {
.loopDivider = target_rate / 24000000,
.postDivider = 1,
.numerator = (target_rate % 24000000) / div,
.denominator = 24000000 / div,
};
CLOCK_InitAudioPll(&config);
}
void port_i2s_play(i2s_t *self, mp_obj_t sample, bool loop) {
self->sample = sample;
self->loop = loop;
self->bytes_per_sample = audiosample_bits_per_sample(sample) / 8;
self->channel_count = audiosample_channel_count(sample);
int instance = SAI_GetInstance(self->peripheral);
i2s_playing |= (1 << instance);
uint32_t sample_rate = audiosample_sample_rate(sample);
if (sample_rate != self->sample_rate) {
if (__builtin_popcount(i2s_playing) <= 1) {
// as this is the first/only i2s instance playing audio, we can
// safely change the overall clock used by the SAI peripheral, to
// get more accurate frequency reproduction. If another i2s
// instance is playing, then we can't touch the audio PLL and have
// to live with what we can get, which may be inaccurate
set_sai_clocking_for_sample_rate(sample_rate);
}
SAI_TxSetBitClockRate(self->peripheral, SAI_CLOCK_FREQ, sample_rate, 16, 2);
self->sample_rate = sample_rate;
}
bool single_buffer;
bool samples_signed;
uint32_t max_buffer_length;
uint8_t spacing;
audiosample_get_buffer_structure(sample, false, &single_buffer, &samples_signed,
&max_buffer_length, &spacing);
self->samples_signed = samples_signed;
self->playing = true;
self->paused = false;
self->stopping = false;
self->sample_data = self->sample_end = NULL;
audiosample_reset_buffer(self->sample, false, 0);
// TODO
#if 0
uint32_t sample_rate = audiosample_sample_rate(sample);
if (sample_rate != self->i2s_config.sample_rate) {
CHECK_ESP_RESULT(i2s_set_sample_rates(self->instance, audiosample_sample_rate(sample)));
self->i2s_config.sample_rate = sample_rate;
}
#endif
background_callback_add(&self->callback, i2s_callback_fun, self);
}
bool port_i2s_get_playing(i2s_t *self) {
return self->playing;
}
bool port_i2s_get_paused(i2s_t *self) {
return self->paused;
}
void port_i2s_stop(i2s_t *self) {
self->sample = NULL;
self->paused = false;
self->playing = false;
self->stopping = false;
}
void port_i2s_pause(i2s_t *self) {
self->paused = true;
}
void port_i2s_resume(i2s_t *self) {
self->paused = false;
}
void i2s_reset() {
// this port relies on object finalizers for reset
}