circuitpython/py/objcomplex.c
Scott Shawcroft 30ee7019ca Merge tag 'v1.9.1'
Fixes for stmhal USB mass storage, lwIP bindings and VFS regressions

This release provides an important fix for the USB mass storage device in
the stmhal port by implementing the SCSI SYNCHRONIZE_CACHE command, which
is now require by some Operating Systems.  There are also fixes for the
lwIP bindings to improve non-blocking sockets and error codes.  The VFS has
some regressions fixed including the ability to statvfs the root.

All changes are listed below.

py core:
- modbuiltins: add core-provided version of input() function
- objstr: catch case of negative "maxsplit" arg to str.rsplit()
- persistentcode: allow to compile with complex numbers disabled
- objstr: allow to compile with obj-repr D, and unicode disabled
- modsys: allow to compile with obj-repr D and PY_ATTRTUPLE disabled
- provide mp_decode_uint_skip() to help reduce stack usage
- makeqstrdefs.py: make script run correctly with Python 2.6
- objstringio: if created from immutable object, follow copy on write policy

extmod:
- modlwip: connect: for non-blocking mode, return EINPROGRESS
- modlwip: fix error codes for duplicate calls to connect()
- modlwip: accept: fix error code for non-blocking mode
- vfs: allow to statvfs the root directory
- vfs: allow "buffering" and "encoding" args to VFS's open()
- modframebuf: fix signed/unsigned comparison pendantic warning

lib:
- libm: use isfinite instead of finitef, for C99 compatibility
- utils/interrupt_char: remove support for KBD_EXCEPTION disabled

tests:
- basics/string_rsplit: add tests for negative "maxsplit" argument
- float: convert "sys.exit()" to "raise SystemExit"
- float/builtin_float_minmax: PEP8 fixes
- basics: convert "sys.exit()" to "raise SystemExit"
- convert remaining "sys.exit()" to "raise SystemExit"

unix port:
- convert to use core-provided version of built-in import()
- Makefile: replace references to make with $(MAKE)

windows port:
- convert to use core-provided version of built-in import()

qemu-arm port:
- Makefile: adjust object-file lists to get correct dependencies
- enable micropython.mem_*() functions to allow more tests

stmhal port:
- boards: enable DAC for NUCLEO_F767ZI board
- add support for NUCLEO_F446RE board
- pass USB handler as parameter to allow more than one USB handler
- usb: use local USB handler variable in Start-of-Frame handler
- usb: make state for USB device private to top-level USB driver
- usbdev: for MSC implement SCSI SYNCHRONIZE_CACHE command
- convert from using stmhal's input() to core provided version

cc3200 port:
- convert from using stmhal's input() to core provided version

teensy port:
- convert from using stmhal's input() to core provided version

esp8266 port:
- Makefile: replace references to make with $(MAKE)
- Makefile: add clean-modules target
- convert from using stmhal's input() to core provided version

zephyr port:
- modusocket: getaddrinfo: Fix mp_obj_len() usage
- define MICROPY_PY_SYS_PLATFORM (to "zephyr")
- machine_pin: use native Zephyr types for Zephyr API calls

docs:
- machine.Pin: remove out_value() method
- machine.Pin: add on() and off() methods
- esp8266: consistently replace Pin.high/low methods with .on/off
- esp8266/quickref: polish Pin.on()/off() examples
- network: move confusingly-named cc3200 Server class to its reference
- uos: deconditionalize, remove minor port-specific details
- uos: move cc3200 port legacy VFS mounting functions to its ref doc
- machine: sort machine classes in logical order, not alphabetically
- network: first step to describe standard network class interface

examples:
- embedding: use core-provided KeyboardInterrupt object
2017-06-20 10:56:05 -07:00

262 lines
9.1 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include "py/nlr.h"
#include "py/obj.h"
#include "py/parsenum.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#if MICROPY_PY_BUILTINS_COMPLEX
#include <math.h>
#include "py/formatfloat.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
typedef struct _mp_obj_complex_t {
mp_obj_base_t base;
mp_float_t real;
mp_float_t imag;
} mp_obj_complex_t;
STATIC void complex_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
(void)kind;
mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in);
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
char buf[16];
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
const int precision = 6;
#else
const int precision = 7;
#endif
#else
char buf[32];
const int precision = 16;
#endif
if (o->real == 0) {
mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0');
mp_printf(print, "%sj", buf);
} else {
mp_format_float(o->real, buf, sizeof(buf), 'g', precision, '\0');
mp_printf(print, "(%s", buf);
if (o->imag >= 0 || isnan(o->imag)) {
mp_print_str(print, "+");
}
mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0');
mp_printf(print, "%sj)", buf);
}
}
STATIC mp_obj_t complex_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
(void)type_in;
mp_arg_check_num(n_args, n_kw, 0, 2, false);
switch (n_args) {
case 0:
return mp_obj_new_complex(0, 0);
case 1:
if (MP_OBJ_IS_STR(args[0])) {
// a string, parse it
size_t l;
const char *s = mp_obj_str_get_data(args[0], &l);
return mp_parse_num_decimal(s, l, true, true, NULL);
} else if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) {
// a complex, just return it
return args[0];
} else {
// something else, try to cast it to a complex
return mp_obj_new_complex(mp_obj_get_float(args[0]), 0);
}
case 2:
default: {
mp_float_t real, imag;
if (MP_OBJ_IS_TYPE(args[0], &mp_type_complex)) {
mp_obj_complex_get(args[0], &real, &imag);
} else {
real = mp_obj_get_float(args[0]);
imag = 0;
}
if (MP_OBJ_IS_TYPE(args[1], &mp_type_complex)) {
mp_float_t real2, imag2;
mp_obj_complex_get(args[1], &real2, &imag2);
real -= imag2;
imag += real2;
} else {
imag += mp_obj_get_float(args[1]);
}
return mp_obj_new_complex(real, imag);
}
}
}
STATIC mp_obj_t complex_unary_op(mp_uint_t op, mp_obj_t o_in) {
mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in);
switch (op) {
case MP_UNARY_OP_BOOL: return mp_obj_new_bool(o->real != 0 || o->imag != 0);
case MP_UNARY_OP_HASH: return MP_OBJ_NEW_SMALL_INT(mp_float_hash(o->real) ^ mp_float_hash(o->imag));
case MP_UNARY_OP_POSITIVE: return o_in;
case MP_UNARY_OP_NEGATIVE: return mp_obj_new_complex(-o->real, -o->imag);
default: return MP_OBJ_NULL; // op not supported
}
}
STATIC mp_obj_t complex_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
mp_obj_complex_t *lhs = MP_OBJ_TO_PTR(lhs_in);
return mp_obj_complex_binary_op(op, lhs->real, lhs->imag, rhs_in);
}
STATIC void complex_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
if (dest[0] != MP_OBJ_NULL) {
// not load attribute
return;
}
mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in);
if (attr == MP_QSTR_real) {
dest[0] = mp_obj_new_float(self->real);
} else if (attr == MP_QSTR_imag) {
dest[0] = mp_obj_new_float(self->imag);
}
}
const mp_obj_type_t mp_type_complex = {
{ &mp_type_type },
.name = MP_QSTR_complex,
.print = complex_print,
.make_new = complex_make_new,
.unary_op = complex_unary_op,
.binary_op = complex_binary_op,
.attr = complex_attr,
};
mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag) {
mp_obj_complex_t *o = m_new_obj(mp_obj_complex_t);
o->base.type = &mp_type_complex;
o->real = real;
o->imag = imag;
return MP_OBJ_FROM_PTR(o);
}
void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_complex));
mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in);
*real = self->real;
*imag = self->imag;
}
mp_obj_t mp_obj_complex_binary_op(mp_uint_t op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in) {
mp_float_t rhs_real, rhs_imag;
mp_obj_get_complex(rhs_in, &rhs_real, &rhs_imag); // can be any type, this function will convert to float (if possible)
switch (op) {
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_INPLACE_ADD:
lhs_real += rhs_real;
lhs_imag += rhs_imag;
break;
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_INPLACE_SUBTRACT:
lhs_real -= rhs_real;
lhs_imag -= rhs_imag;
break;
case MP_BINARY_OP_MULTIPLY:
case MP_BINARY_OP_INPLACE_MULTIPLY: {
mp_float_t real;
multiply:
real = lhs_real * rhs_real - lhs_imag * rhs_imag;
lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real;
lhs_real = real;
break;
}
case MP_BINARY_OP_FLOOR_DIVIDE:
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
mp_raise_TypeError("can't do truncated division of a complex number");
case MP_BINARY_OP_TRUE_DIVIDE:
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
if (rhs_imag == 0) {
if (rhs_real == 0) {
mp_raise_msg(&mp_type_ZeroDivisionError, "complex division by zero");
}
lhs_real /= rhs_real;
lhs_imag /= rhs_real;
} else if (rhs_real == 0) {
mp_float_t real = lhs_imag / rhs_imag;
lhs_imag = -lhs_real / rhs_imag;
lhs_real = real;
} else {
mp_float_t rhs_len_sq = rhs_real*rhs_real + rhs_imag*rhs_imag;
rhs_real /= rhs_len_sq;
rhs_imag /= -rhs_len_sq;
goto multiply;
}
break;
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_INPLACE_POWER: {
// z1**z2 = exp(z2*ln(z1))
// = exp(z2*(ln(|z1|)+i*arg(z1)))
// = exp( (x2*ln1 - y2*arg1) + i*(y2*ln1 + x2*arg1) )
// = exp(x3 + i*y3)
// = exp(x3)*(cos(y3) + i*sin(y3))
mp_float_t abs1 = MICROPY_FLOAT_C_FUN(sqrt)(lhs_real*lhs_real + lhs_imag*lhs_imag);
if (abs1 == 0) {
if (rhs_imag == 0 && rhs_real >= 0) {
lhs_real = (rhs_real == 0);
rhs_real = 0;
} else {
mp_raise_msg(&mp_type_ZeroDivisionError, "0.0 to a complex power");
}
} else {
mp_float_t ln1 = MICROPY_FLOAT_C_FUN(log)(abs1);
mp_float_t arg1 = MICROPY_FLOAT_C_FUN(atan2)(lhs_imag, lhs_real);
mp_float_t x3 = rhs_real * ln1 - rhs_imag * arg1;
mp_float_t y3 = rhs_imag * ln1 + rhs_real * arg1;
mp_float_t exp_x3 = MICROPY_FLOAT_C_FUN(exp)(x3);
lhs_real = exp_x3 * MICROPY_FLOAT_C_FUN(cos)(y3);
lhs_imag = exp_x3 * MICROPY_FLOAT_C_FUN(sin)(y3);
}
break;
}
case MP_BINARY_OP_EQUAL: return mp_obj_new_bool(lhs_real == rhs_real && lhs_imag == rhs_imag);
default:
return MP_OBJ_NULL; // op not supported
}
return mp_obj_new_complex(lhs_real, lhs_imag);
}
#pragma GCC diagnostic pop
#endif