e33db80a59
This removes the difference in the time.ticks_us() range between SAMD21 and SAMD51. The function mp_hal_ticks_us_64() is added and used for: - SAMD51's mp_hal_ticks_us and mp_hal_delay_us(). For SAMD21, keep the previous methods, which are faster. - mp_hal_ticks_ms() and mp_hal_tick_ms_64(), which saves some bytes and removes a potential race condition every 50 days. Also set the us-counter for SAMD51 to 16 MHz for a faster reading of the microsecond value. Note: With SAMD51, mp_hal_ticks_us_64() has a 60 bit range only, which is still a long time (~36000 years).
361 lines
14 KiB
C
361 lines
14 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* This file provides functions for configuring the clocks.
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2022 Robert Hammelrath
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "py/mphal.h"
|
|
#include "samd_soc.h"
|
|
|
|
static uint32_t cpu_freq = CPU_FREQ;
|
|
static uint32_t peripheral_freq = DFLL48M_FREQ;
|
|
static uint32_t dfll48m_calibration;
|
|
|
|
int sercom_gclk_id[] = {
|
|
SERCOM0_GCLK_ID_CORE, SERCOM1_GCLK_ID_CORE,
|
|
SERCOM2_GCLK_ID_CORE, SERCOM3_GCLK_ID_CORE,
|
|
SERCOM4_GCLK_ID_CORE, SERCOM5_GCLK_ID_CORE,
|
|
#if defined(SERCOM7_GCLK_ID_CORE)
|
|
SERCOM6_GCLK_ID_CORE, SERCOM7_GCLK_ID_CORE,
|
|
#endif
|
|
};
|
|
|
|
uint32_t get_cpu_freq(void) {
|
|
return cpu_freq;
|
|
}
|
|
|
|
uint32_t get_peripheral_freq(void) {
|
|
return peripheral_freq;
|
|
}
|
|
|
|
void set_cpu_freq(uint32_t cpu_freq_arg) {
|
|
|
|
// Setup GCLK0 for 48MHz as default state to keep the MCU running during config change.
|
|
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
|
|
}
|
|
// Setup DPLL0 for 120 MHz
|
|
// first: disable DPLL0 in case it is running
|
|
OSCCTRL->Dpll[0].DPLLCTRLA.bit.ENABLE = 0;
|
|
while (OSCCTRL->Dpll[0].DPLLSYNCBUSY.bit.ENABLE == 1) {
|
|
}
|
|
if (cpu_freq_arg > DFLL48M_FREQ) {
|
|
|
|
cpu_freq = cpu_freq_arg;
|
|
peripheral_freq = DFLL48M_FREQ;
|
|
// Now configure the registers
|
|
OSCCTRL->Dpll[0].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_DIV(1) | OSCCTRL_DPLLCTRLB_LBYPASS |
|
|
OSCCTRL_DPLLCTRLB_REFCLK(0) | OSCCTRL_DPLLCTRLB_WUF | OSCCTRL_DPLLCTRLB_FILTER(0x01);
|
|
|
|
uint32_t div = cpu_freq / DPLLx_REF_FREQ;
|
|
uint32_t frac = (cpu_freq - div * DPLLx_REF_FREQ) / (DPLLx_REF_FREQ / 32);
|
|
OSCCTRL->Dpll[0].DPLLRATIO.reg = (frac << 16) + div - 1;
|
|
// enable it again
|
|
OSCCTRL->Dpll[0].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_ENABLE | OSCCTRL_DPLLCTRLA_RUNSTDBY;
|
|
|
|
// Per errata 2.13.1
|
|
while (!(OSCCTRL->Dpll[0].DPLLSTATUS.bit.CLKRDY == 1)) {
|
|
}
|
|
// Setup GCLK0 for DPLL0 output (48 or 48-200MHz)
|
|
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DPLL0;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
|
|
}
|
|
// Set GCLK 2 back to 48 MHz
|
|
GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL2) {
|
|
}
|
|
} else {
|
|
int div = DFLL48M_FREQ / cpu_freq_arg;
|
|
// Setup GCLK1 for the low freq
|
|
GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(div) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL2) {
|
|
}
|
|
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_DIV(div) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
|
|
}
|
|
peripheral_freq = DFLL48M_FREQ / div;
|
|
cpu_freq = DFLL48M_FREQ / div;
|
|
}
|
|
if (cpu_freq >= 8000000) {
|
|
// Setup GCLK5 for DFLL48M output (48 MHz)
|
|
GCLK->GENCTRL[5].reg = GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL5) {
|
|
}
|
|
} else {
|
|
// Setup GCLK5 off if CPU Clk < 8 MHz
|
|
GCLK->GENCTRL[5].reg = 0;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL5) {
|
|
}
|
|
}
|
|
SysTick_Config(cpu_freq / 1000);
|
|
}
|
|
|
|
void check_usb_recovery_mode(void) {
|
|
#if !MICROPY_HW_XOSC32K
|
|
mp_hal_delay_ms(500);
|
|
// Check USB status. If not connected, switch DFLL48M back to open loop
|
|
if (USB->DEVICE.DeviceEndpoint[0].EPCFG.reg == 0) {
|
|
// as per Errata 2.8.3
|
|
OSCCTRL->DFLLMUL.reg = 0;
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) {
|
|
}
|
|
// Set the mode to open loop mode
|
|
OSCCTRL->DFLLCTRLB.reg = 0;
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) {
|
|
}
|
|
OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_RUNSTDBY | OSCCTRL_DFLLCTRLA_ENABLE;
|
|
while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) {
|
|
}
|
|
OSCCTRL->DFLLVAL.reg = dfll48m_calibration; // Reload DFLLVAL register
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLVAL == 1) {
|
|
}
|
|
// Set the mode to open loop mode
|
|
OSCCTRL->DFLLCTRLB.reg = 0;
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) {
|
|
}
|
|
}
|
|
#endif // MICROPY_HW_XOSC32K
|
|
}
|
|
|
|
// Purpose of the #defines for the clock configuration.
|
|
//
|
|
// The CPU clock is generated by DPLL0, which takes 32768 Hz as reference frequency,
|
|
// supplied through GCLK1.
|
|
//
|
|
// DFLL48M is used for the peripheral clock, e.g. for PWM, UART, SPI, I2C.
|
|
// DFLL48M is either free running, or controlled by the 32kHz crystal, or
|
|
// Synchronized with the USB clock.
|
|
//
|
|
// GCLK1 takes it's input either from the 32kHz crystal, the internal low power
|
|
// RC oscillator or from DFLL48M.
|
|
//
|
|
// #define MICROPY_HW_XOSC32K (0 | 1)
|
|
//
|
|
// If MICROPY_HW_XOSC32K = 1, the 32kHz crystal is used for the DFLL48M oscillator
|
|
// and for GCLK1, feeding the CPU, unless MICROPY_HW_MCU_OSC32KULP is set.
|
|
// In that case GCLK1 (and the CPU clock) is driven by the 32K Low power oscillator.
|
|
// The reason for offering this option is a design flaw of the Adafruit
|
|
// Feather boards, where the RGB Led and Debug signals interfere with the
|
|
// crystal, causing the CPU to fail if it is driven by the crystal. The
|
|
// peripheral devices are affected as well, but continue it's operation.
|
|
//
|
|
// If MICROPY_HW_XOSC32K = 0, the 32kHz signal for GCLK1 (and the CPU) is
|
|
// created by dividing the 48MHz clock of DFLL48M.
|
|
//
|
|
// If MICROPY_HW_DFLL_USB_SYNC = 0, the DFLL48M oscillator is free running using
|
|
// the pre-configured trim values. In that mode, the peripheral clock is
|
|
// not exactly 48Mhz and has a substantional temperature drift.
|
|
//
|
|
// If MICROPY_HW_DFLL_USB_SYNC = 1, the DFLL48 is synchronized with the 1 kHz USB sync
|
|
// signal. If after boot there is no USB sync withing 500ms, the configuratuion falls
|
|
// back to a free running 48Mhz oscillator.
|
|
//
|
|
// In all modes, the 48MHz signal has a substantial jitter, largest when
|
|
// MICROPY_HW_DFLL_USB_SYNC is active. That is caused by the repective
|
|
// reference frequencies of 32kHz or 1 kHz being low. That affects most
|
|
// PWM. Std Dev at 1kHz 0.156Hz (w. Crystal) up to 0.4 Hz (with USB sync).
|
|
//
|
|
// If none of the mentioned defines is set, the device uses the internal oscillators.
|
|
|
|
void init_clocks(uint32_t cpu_freq) {
|
|
|
|
dfll48m_calibration = 0; // please the compiler
|
|
|
|
// SAMD51 clock settings
|
|
// GCLK0: 48MHz from DFLL48M or 48 - 200 MHz from DPLL0 (SAMD51)
|
|
// GCLK1: 32768 Hz from 32KULP or DFLL48M
|
|
// GCLK2: 8-48MHz from DFLL48M for Peripheral devices
|
|
// GCLK3: 16Mhz for the us-counter (TC0/TC1)
|
|
// GCLK4: 32kHz from crystal, if present
|
|
// GCLK5: 48MHz from DFLL48M for USB
|
|
// DPLL0: 48 - 200 MHz
|
|
|
|
// Steps to set up clocks:
|
|
// Reset Clocks
|
|
// Switch GCLK0 to DFLL 48MHz
|
|
// Setup 32768 Hz source and DFLL48M in closed loop mode, if a crystal is present.
|
|
// Setup GCLK1 to the DPLL0 Reference freq. of 32768 Hz
|
|
// Setup GCLK1 to drive peripheral channel 1
|
|
// Setup DPLL0 to 120MHz
|
|
// Setup GCLK0 to 120MHz
|
|
// Setup GCLK2 to 48MHz for Peripherals
|
|
// Setup GCLK3 to 16MHz for TC0/TC1
|
|
// Setup GCLK4 to 32kHz crystal, if present
|
|
// Setup GCLK5 to 48 MHz
|
|
|
|
// Setup GCLK0 for 48MHz as default state to keep the MCU running during config change.
|
|
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
|
|
}
|
|
|
|
#if MICROPY_HW_XOSC32K
|
|
// OSCILLATOR CONTROL
|
|
// Enable the clock for RTC
|
|
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K;
|
|
// Setup XOSC32K
|
|
OSC32KCTRL->INTFLAG.reg = OSC32KCTRL_INTFLAG_XOSC32KRDY | OSC32KCTRL_INTFLAG_XOSC32KFAIL;
|
|
OSC32KCTRL->CFDCTRL.bit.CFDEN = 1; // Fall back to internal Osc on crystal fail
|
|
OSC32KCTRL->XOSC32K.reg =
|
|
OSC32KCTRL_XOSC32K_CGM_HS |
|
|
OSC32KCTRL_XOSC32K_XTALEN |
|
|
OSC32KCTRL_XOSC32K_EN32K |
|
|
OSC32KCTRL_XOSC32K_EN1K |
|
|
OSC32KCTRL_XOSC32K_RUNSTDBY |
|
|
OSC32KCTRL_XOSC32K_STARTUP(4) |
|
|
OSC32KCTRL_XOSC32K_ENABLE;
|
|
// make sure osc32kcrtl is ready
|
|
while (OSC32KCTRL->STATUS.bit.XOSC32KRDY == 0) {
|
|
}
|
|
|
|
#if MICROPY_HW_MCU_OSC32KULP
|
|
// Setup GCLK1 for 32kHz ULP
|
|
GCLK->GENCTRL[1].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K;
|
|
#else
|
|
// Setup GCLK1 for 32kHz crystal
|
|
GCLK->GENCTRL[1].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K;
|
|
#endif
|
|
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL1) {
|
|
}
|
|
|
|
// Setup GCLK4 for 32kHz crystal
|
|
GCLK->GENCTRL[4].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL4) {
|
|
}
|
|
|
|
// Set-up the DFLL48M in closed loop mode with input from the 32kHz crystal
|
|
|
|
// Step 1: Peripheral channel 0 is driven by GCLK4 and it feeds DFLL48M
|
|
GCLK->PCHCTRL[0].reg = GCLK_PCHCTRL_GEN_GCLK4 | GCLK_PCHCTRL_CHEN;
|
|
while (GCLK->PCHCTRL[0].bit.CHEN == 0) {
|
|
}
|
|
// Step 2: Set the multiplication values. The offset of 16384 to the freq is for rounding.
|
|
OSCCTRL->DFLLMUL.reg = OSCCTRL_DFLLMUL_MUL((DFLL48M_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) |
|
|
OSCCTRL_DFLLMUL_FSTEP(1) | OSCCTRL_DFLLMUL_CSTEP(1);
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) {
|
|
}
|
|
// Step 3: Set the mode to closed loop
|
|
OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_BPLCKC | OSCCTRL_DFLLCTRLB_STABLE | OSCCTRL_DFLLCTRLB_MODE;
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) {
|
|
}
|
|
// Wait for lock fine
|
|
while (OSCCTRL->STATUS.bit.DFLLLCKF == 0) {
|
|
}
|
|
// Step 4: Start the DFLL.
|
|
OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_RUNSTDBY | OSCCTRL_DFLLCTRLA_ENABLE;
|
|
while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) {
|
|
}
|
|
|
|
#else // MICROPY_HW_XOSC32K
|
|
|
|
// Enable the clock for RTC
|
|
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K;
|
|
|
|
// Derive GCLK1 from DFLL48M at DPLL0_REF_FREQ as defined in mpconfigboard.h (e.g. 32768 Hz)
|
|
GCLK->GENCTRL[1].reg = ((DFLL48M_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) << GCLK_GENCTRL_DIV_Pos
|
|
| GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL1) {
|
|
}
|
|
|
|
OSCCTRL->DFLLCTRLA.bit.RUNSTDBY = 1;
|
|
OSCCTRL->DFLLCTRLA.bit.ONDEMAND = 0;
|
|
|
|
OSCCTRL->DFLLCTRLA.bit.ENABLE = 1;
|
|
while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) {
|
|
}
|
|
|
|
#if MICROPY_HW_DFLL_USB_SYNC
|
|
// Configure the DFLL48M for USB clock recovery.
|
|
// Will have to switch back if no USB
|
|
dfll48m_calibration = OSCCTRL->DFLLVAL.reg;
|
|
// Set the Multiplication factor.
|
|
OSCCTRL->DFLLMUL.reg = OSCCTRL_DFLLMUL_MUL(48000) |
|
|
OSCCTRL_DFLLMUL_FSTEP(1) | OSCCTRL_DFLLMUL_CSTEP(1);
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) {
|
|
}
|
|
// Set the mode to closed loop USB Recovery
|
|
OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_USBCRM | OSCCTRL_DFLLCTRLB_CCDIS | OSCCTRL_DFLLCTRLB_MODE;
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) {
|
|
}
|
|
#endif
|
|
|
|
#endif // MICROPY_HW_XOSC32K
|
|
|
|
// Peripheral channel 1 is driven by GCLK1 and it feeds DPLL0
|
|
GCLK->PCHCTRL[1].reg = GCLK_PCHCTRL_GEN_GCLK1 | GCLK_PCHCTRL_CHEN;
|
|
while (GCLK->PCHCTRL[1].bit.CHEN == 0) {
|
|
}
|
|
|
|
set_cpu_freq(cpu_freq);
|
|
|
|
peripheral_freq = DFLL48M_FREQ; // To be changed if CPU_FREQ < 48M
|
|
|
|
// Setup GCLK2 for DFLL48M output (48 MHz), may be scaled down later by calls to set_cpu_freq
|
|
GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL2) {
|
|
}
|
|
|
|
// Setup GCLK3 for 16MHz, Used for TC0/1 counter
|
|
GCLK->GENCTRL[3].reg = GCLK_GENCTRL_DIV(3) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL3) {
|
|
}
|
|
}
|
|
|
|
void enable_sercom_clock(int id) {
|
|
GCLK->PCHCTRL[sercom_gclk_id[id]].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK2;
|
|
// no easy way to set the clocks, except enabling all of them
|
|
switch (id) {
|
|
case 0:
|
|
MCLK->APBAMASK.bit.SERCOM0_ = 1;
|
|
break;
|
|
case 1:
|
|
MCLK->APBAMASK.bit.SERCOM1_ = 1;
|
|
break;
|
|
case 2:
|
|
MCLK->APBBMASK.bit.SERCOM2_ = 1;
|
|
break;
|
|
case 3:
|
|
MCLK->APBBMASK.bit.SERCOM3_ = 1;
|
|
break;
|
|
case 4:
|
|
MCLK->APBDMASK.bit.SERCOM4_ = 1;
|
|
break;
|
|
case 5:
|
|
MCLK->APBDMASK.bit.SERCOM5_ = 1;
|
|
break;
|
|
#ifdef SERCOM7_GCLK_ID_CORE
|
|
case 6:
|
|
MCLK->APBDMASK.bit.SERCOM6_ = 1;
|
|
break;
|
|
case 7:
|
|
MCLK->APBDMASK.bit.SERCOM7_ = 1;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|