316 lines
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Dan Halbert for Adafruit Industries
* Copyright (c) 2020 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "supervisor/esp_port.h"
#include "shared-bindings/alarm/pin/PinAlarm.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "hal/gpio_ll.h"
#include "esp_debug_helpers.h"
#include "components/driver/include/driver/rtc_io.h"
#include "components/esp_system/include/esp_sleep.h"
#include "components/freertos/include/freertos/FreeRTOS.h"
void common_hal_alarm_pin_pinalarm_construct(alarm_pin_pinalarm_obj_t *self, const mcu_pin_obj_t *pin, bool value, bool edge, bool pull) {
if (edge) {
mp_raise_ValueError(translate("Cannot wake on pin edge. Only level."));
}
if (pull && !GPIO_IS_VALID_OUTPUT_GPIO(pin->number)) {
mp_raise_ValueError(translate("Cannot pull on input-only pin."));
}
self->pin = pin;
self->value = value;
self->pull = pull;
}
const mcu_pin_obj_t *common_hal_alarm_pin_pinalarm_get_pin(alarm_pin_pinalarm_obj_t *self) {
return self->pin;
}
bool common_hal_alarm_pin_pinalarm_get_value(alarm_pin_pinalarm_obj_t *self) {
return self->value;
}
bool common_hal_alarm_pin_pinalarm_get_edge(alarm_pin_pinalarm_obj_t *self) {
return false;
}
bool common_hal_alarm_pin_pinalarm_get_pull(alarm_pin_pinalarm_obj_t *self) {
return self->pull;
}
gpio_isr_handle_t gpio_interrupt_handle;
// Low and high are relative to pin number. 32+ is high. <32 is low.
static volatile uint32_t pin_31_0_status = 0;
static volatile uint32_t pin_63_32_status = 0;
STATIC void gpio_interrupt(void *arg) {
(void)arg;
gpio_ll_get_intr_status(&GPIO, xPortGetCoreID(), (uint32_t *)&pin_31_0_status);
gpio_ll_clear_intr_status(&GPIO, pin_31_0_status);
gpio_ll_get_intr_status_high(&GPIO, xPortGetCoreID(), (uint32_t *)&pin_63_32_status);
gpio_ll_clear_intr_status_high(&GPIO, pin_63_32_status);
// disable the interrupts that fired, maybe all of them
for (size_t i = 0; i < 32; i++) {
uint32_t mask = 1 << i;
if ((pin_31_0_status & mask) != 0) {
gpio_ll_intr_disable(&GPIO, i);
}
if ((pin_63_32_status & mask) != 0) {
gpio_ll_intr_disable(&GPIO, 32 + i);
}
}
BaseType_t high_task_wakeup;
vTaskNotifyGiveFromISR(circuitpython_task, &high_task_wakeup);
if (high_task_wakeup) {
portYIELD_FROM_ISR();
}
}
bool alarm_pin_pinalarm_woke_this_cycle(void) {
return pin_31_0_status != 0 || pin_63_32_status != 0;
}
mp_obj_t alarm_pin_pinalarm_find_triggered_alarm(size_t n_alarms, const mp_obj_t *alarms) {
uint64_t pin_status = ((uint64_t)pin_63_32_status) << 32 | pin_31_0_status;
for (size_t i = 0; i < n_alarms; i++) {
if (!mp_obj_is_type(alarms[i], &alarm_pin_pinalarm_type)) {
continue;
}
alarm_pin_pinalarm_obj_t *alarm = MP_OBJ_TO_PTR(alarms[i]);
if ((pin_status & (1ull << alarm->pin->number)) != 0) {
return alarms[i];
}
}
return mp_const_none;
}
mp_obj_t alarm_pin_pinalarm_create_wakeup_alarm(void) {
esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause();
// Pin status will persist into a fake deep sleep
uint64_t pin_status = ((uint64_t)pin_63_32_status) << 32 | pin_31_0_status;
size_t pin_number = 64;
if (cause == ESP_SLEEP_WAKEUP_EXT0) {
pin_number = REG_GET_FIELD(RTC_IO_EXT_WAKEUP0_REG, RTC_IO_EXT_WAKEUP0_SEL);
} else {
if (cause == ESP_SLEEP_WAKEUP_EXT1) {
pin_status = esp_sleep_get_ext1_wakeup_status();
}
// If the cause is GPIO, we've already snagged pin_status in the interrupt.
// We'll only get here if we pretended to deep sleep. Light sleep will
// pass in existing objects.
for (size_t i = 0; i < 64; i++) {
if ((pin_status & (1ull << i)) != 0) {
pin_number = i;
break;
}
}
}
alarm_pin_pinalarm_obj_t *alarm = m_new_obj(alarm_pin_pinalarm_obj_t);
alarm->base.type = &alarm_pin_pinalarm_type;
alarm->pin = NULL;
// Map the pin number back to a pin object.
for (size_t i = 0; i < mcu_pin_globals.map.used; i++) {
const mcu_pin_obj_t *pin_obj = MP_OBJ_TO_PTR(mcu_pin_globals.map.table[i].value);
if ((size_t)pin_obj->number == pin_number) {
alarm->pin = mcu_pin_globals.map.table[i].value;
break;
}
}
return alarm;
}
// These must be static because we need to configure pulls later, right before
// deep sleep.
static uint64_t high_alarms = 0;
static uint64_t low_alarms = 0;
static uint64_t pull_pins = 0;
void alarm_pin_pinalarm_reset(void) {
if (gpio_interrupt_handle != NULL) {
esp_intr_free(gpio_interrupt_handle);
gpio_interrupt_handle = NULL;
}
for (size_t i = 0; i < 64; i++) {
uint64_t mask = 1ull << i;
bool high = (high_alarms & mask) != 0;
bool low = (low_alarms & mask) != 0;
if (!(high || low)) {
continue;
}
reset_pin_number(i);
}
high_alarms = 0;
low_alarms = 0;
pull_pins = 0;
pin_63_32_status = 0;
pin_31_0_status = 0;
}
void alarm_pin_pinalarm_set_alarms(bool deep_sleep, size_t n_alarms, const mp_obj_t *alarms) {
// Bitmask of wake up settings.
size_t high_count = 0;
size_t low_count = 0;
for (size_t i = 0; i < n_alarms; i++) {
// TODO: Check for ULP or touch alarms because they can't coexist with GPIO alarms.
if (!mp_obj_is_type(alarms[i], &alarm_pin_pinalarm_type)) {
continue;
}
alarm_pin_pinalarm_obj_t *alarm = MP_OBJ_TO_PTR(alarms[i]);
gpio_num_t pin_number = alarm->pin->number;
if (alarm->value) {
high_alarms |= 1ull << pin_number;
high_count++;
} else {
low_alarms |= 1ull << pin_number;
low_count++;
}
if (alarm->pull) {
pull_pins |= 1ull << pin_number;
}
}
if (high_count == 0 && low_count == 0) {
return;
}
if (deep_sleep && low_count > 2 && high_count == 0) {
mp_raise_ValueError(translate("Can only alarm on two low pins from deep sleep."));
}
if (deep_sleep && low_count > 1 && high_count > 0) {
mp_raise_ValueError(translate("Can only alarm on one low pin while others alarm high from deep sleep."));
}
// Only use ext0 and ext1 during deep sleep.
if (deep_sleep) {
if (high_count > 0) {
if (esp_sleep_enable_ext1_wakeup(high_alarms, ESP_EXT1_WAKEUP_ANY_HIGH) != ESP_OK) {
mp_raise_ValueError(translate("Can only alarm on RTC IO from deep sleep."));
}
}
size_t low_pins[2];
size_t j = 0;
for (size_t i = 0; i < 64; i++) {
uint64_t mask = 1ull << i;
if ((low_alarms & mask) != 0) {
low_pins[j++] = i;
}
if (j == 2) {
break;
}
}
if (low_count > 1) {
if (esp_sleep_enable_ext1_wakeup(1ull << low_pins[1], ESP_EXT1_WAKEUP_ALL_LOW) != ESP_OK) {
mp_raise_ValueError(translate("Can only alarm on RTC IO from deep sleep."));
}
}
if (low_count > 0) {
if (esp_sleep_enable_ext0_wakeup(low_pins[0], 0) != ESP_OK) {
mp_raise_ValueError(translate("Can only alarm on RTC IO from deep sleep."));
}
}
} else {
// Enable GPIO wake up if we're sleeping.
esp_sleep_enable_gpio_wakeup();
}
// Set GPIO interrupts so they wake us from light sleep or from idle via the
// interrupt handler above.
pin_31_0_status = 0;
pin_63_32_status = 0;
if (gpio_isr_register(gpio_interrupt, NULL, 0, &gpio_interrupt_handle) != ESP_OK) {
mp_raise_ValueError(translate("Can only alarm on RTC IO from deep sleep."));
}
for (size_t i = 0; i < 64; i++) {
uint64_t mask = 1ull << i;
bool high = (high_alarms & mask) != 0;
bool low = (low_alarms & mask) != 0;
bool pull = (pull_pins & mask) != 0;
if (!(high || low)) {
continue;
}
if (rtc_gpio_is_valid_gpio(i)) {
rtc_gpio_deinit(i);
}
gpio_int_type_t interrupt_mode = GPIO_INTR_DISABLE;
gpio_pull_mode_t pull_mode = GPIO_FLOATING;
if (high) {
interrupt_mode = GPIO_INTR_HIGH_LEVEL;
pull_mode = GPIO_PULLDOWN_ONLY;
}
if (low) {
interrupt_mode = GPIO_INTR_LOW_LEVEL;
pull_mode = GPIO_PULLUP_ONLY;
}
gpio_set_direction(i, GPIO_MODE_DEF_INPUT);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[i], PIN_FUNC_GPIO);
if (pull) {
gpio_set_pull_mode(i, pull_mode);
size_t j = 0;
while (gpio_get_level(i) == false) {
j++;
}
}
never_reset_pin_number(i);
// Sets interrupt type and wakeup bits.
gpio_wakeup_enable(i, interrupt_mode);
gpio_intr_enable(i);
}
}
void alarm_pin_pinalarm_prepare_for_deep_sleep(void) {
if (pull_pins == 0) {
return;
}
for (size_t i = 0; i < 64; i++) {
uint64_t mask = 1ull << i;
bool pull = (pull_pins & mask) != 0;
if (!pull) {
continue;
}
bool high = (high_alarms & mask) != 0;
bool low = (low_alarms & mask) != 0;
// The pull direction is opposite from alarm value.
if (high) {
rtc_gpio_pullup_dis(i);
rtc_gpio_pulldown_en(i);
}
if (low) {
rtc_gpio_pullup_en(i);
rtc_gpio_pulldown_dis(i);
}
}
}