circuitpython/tests/float/complex1.py
Damien George bdc6e86e07 py/objfloat: Support raising a negative number to a fractional power.
This returns a complex number, following CPython behaviour.  For ports that
don't have complex numbers enabled this will raise a ValueError which gives
a fail-safe for scripts that were written assuming complex numbers exist.
2017-09-26 12:57:51 +10:00

116 lines
2.2 KiB
Python

# test basic complex number functionality
# constructor
print(complex(1))
print(complex(1.2))
print(complex(1.2j))
print(complex("1"))
print(complex("1.2"))
print(complex("1.2j"))
print(complex(1, 2))
print(complex(1j, 2j))
# unary ops
print(bool(1j))
print(+(1j))
print(-(1 + 2j))
# binary ops
print(1j + False)
print(1j + True)
print(1j + 2)
print(1j + 2j)
print(1j - 2)
print(1j - 2j)
print(1j * 2)
print(1j * 2j)
print(1j / 2)
print((1j / 2j).real)
print(1j / (1 + 2j))
ans = 0j ** 0; print("%.5g %.5g" % (ans.real, ans.imag))
ans = 0j ** 1; print("%.5g %.5g" % (ans.real, ans.imag))
ans = 0j ** 0j; print("%.5g %.5g" % (ans.real, ans.imag))
ans = 1j ** 2.5; print("%.5g %.5g" % (ans.real, ans.imag))
ans = 1j ** 2.5j; print("%.5g %.5g" % (ans.real, ans.imag))
# comparison
print(1j == 1)
print(1j == 1j)
# comparison of nan is special
nan = float('nan') * 1j
print(nan == 1j)
print(nan == nan)
# builtin abs
print(abs(1j))
print("%.5g" % abs(1j + 2))
# builtin hash
print(hash(1 + 0j))
print(type(hash(1j)))
# float on lhs should delegate to complex
print(1.2 + 3j)
# negative base and fractional power should create a complex
ans = (-1) ** 2.3; print("%.5g %.5g" % (ans.real, ans.imag))
ans = (-1.2) ** -3.4; print("%.5g %.5g" % (ans.real, ans.imag))
# check printing of inf/nan
print(float('nan') * 1j)
print(float('inf') * (1 + 1j))
print(float('-inf') * (1 + 1j))
# can't assign to attributes
try:
(1j).imag = 0
except AttributeError:
print('AttributeError')
# can't convert rhs to complex
try:
1j + []
except TypeError:
print("TypeError")
# unsupported unary op
try:
~(1j)
except TypeError:
print("TypeError")
# unsupported binary op
try:
1j // 2
except TypeError:
print("TypeError")
# unsupported binary op
try:
1j < 2j
except TypeError:
print("TypeError")
#small int on LHS, complex on RHS, unsupported op
try:
print(1 | 1j)
except TypeError:
print('TypeError')
# zero division
try:
1j / 0
except ZeroDivisionError:
print("ZeroDivisionError")
# zero division via power
try:
0j ** -1
except ZeroDivisionError:
print("ZeroDivisionError")
try:
0j ** 1j
except ZeroDivisionError:
print("ZeroDivisionError")