30ee7019ca
Fixes for stmhal USB mass storage, lwIP bindings and VFS regressions This release provides an important fix for the USB mass storage device in the stmhal port by implementing the SCSI SYNCHRONIZE_CACHE command, which is now require by some Operating Systems. There are also fixes for the lwIP bindings to improve non-blocking sockets and error codes. The VFS has some regressions fixed including the ability to statvfs the root. All changes are listed below. py core: - modbuiltins: add core-provided version of input() function - objstr: catch case of negative "maxsplit" arg to str.rsplit() - persistentcode: allow to compile with complex numbers disabled - objstr: allow to compile with obj-repr D, and unicode disabled - modsys: allow to compile with obj-repr D and PY_ATTRTUPLE disabled - provide mp_decode_uint_skip() to help reduce stack usage - makeqstrdefs.py: make script run correctly with Python 2.6 - objstringio: if created from immutable object, follow copy on write policy extmod: - modlwip: connect: for non-blocking mode, return EINPROGRESS - modlwip: fix error codes for duplicate calls to connect() - modlwip: accept: fix error code for non-blocking mode - vfs: allow to statvfs the root directory - vfs: allow "buffering" and "encoding" args to VFS's open() - modframebuf: fix signed/unsigned comparison pendantic warning lib: - libm: use isfinite instead of finitef, for C99 compatibility - utils/interrupt_char: remove support for KBD_EXCEPTION disabled tests: - basics/string_rsplit: add tests for negative "maxsplit" argument - float: convert "sys.exit()" to "raise SystemExit" - float/builtin_float_minmax: PEP8 fixes - basics: convert "sys.exit()" to "raise SystemExit" - convert remaining "sys.exit()" to "raise SystemExit" unix port: - convert to use core-provided version of built-in import() - Makefile: replace references to make with $(MAKE) windows port: - convert to use core-provided version of built-in import() qemu-arm port: - Makefile: adjust object-file lists to get correct dependencies - enable micropython.mem_*() functions to allow more tests stmhal port: - boards: enable DAC for NUCLEO_F767ZI board - add support for NUCLEO_F446RE board - pass USB handler as parameter to allow more than one USB handler - usb: use local USB handler variable in Start-of-Frame handler - usb: make state for USB device private to top-level USB driver - usbdev: for MSC implement SCSI SYNCHRONIZE_CACHE command - convert from using stmhal's input() to core provided version cc3200 port: - convert from using stmhal's input() to core provided version teensy port: - convert from using stmhal's input() to core provided version esp8266 port: - Makefile: replace references to make with $(MAKE) - Makefile: add clean-modules target - convert from using stmhal's input() to core provided version zephyr port: - modusocket: getaddrinfo: Fix mp_obj_len() usage - define MICROPY_PY_SYS_PLATFORM (to "zephyr") - machine_pin: use native Zephyr types for Zephyr API calls docs: - machine.Pin: remove out_value() method - machine.Pin: add on() and off() methods - esp8266: consistently replace Pin.high/low methods with .on/off - esp8266/quickref: polish Pin.on()/off() examples - network: move confusingly-named cc3200 Server class to its reference - uos: deconditionalize, remove minor port-specific details - uos: move cc3200 port legacy VFS mounting functions to its ref doc - machine: sort machine classes in logical order, not alphabetically - network: first step to describe standard network class interface examples: - embedding: use core-provided KeyboardInterrupt object
275 lines
11 KiB
C
275 lines
11 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "py/builtin.h"
|
|
#include "py/nlr.h"
|
|
#include "py/runtime.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
|
|
|
|
#include <math.h>
|
|
|
|
// M_PI is not part of the math.h standard and may not be defined
|
|
// And by defining our own we can ensure it uses the correct const format.
|
|
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
|
|
|
|
/// \module math - mathematical functions
|
|
///
|
|
/// The `math` module provides some basic mathematical funtions for
|
|
/// working with floating-point numbers.
|
|
|
|
STATIC NORETURN void math_error(void) {
|
|
mp_raise_ValueError("math domain error");
|
|
}
|
|
|
|
#define MATH_FUN_1(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_2(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_TO_INT(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_ERRCOND(py_name, c_name, error_condition) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { \
|
|
mp_float_t x = mp_obj_get_float(x_obj); \
|
|
if (error_condition) { \
|
|
math_error(); \
|
|
} \
|
|
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(x)); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#ifdef MP_NEED_LOG2
|
|
// 1.442695040888963407354163704 is 1/_M_LN2
|
|
#define log2(x) (log(x) * 1.442695040888963407354163704)
|
|
#endif
|
|
|
|
/// \function sqrt(x)
|
|
/// Returns the square root of `x`.
|
|
MATH_FUN_1_ERRCOND(sqrt, sqrt, (x < (mp_float_t)0.0))
|
|
/// \function pow(x, y)
|
|
/// Returns `x` to the power of `y`.
|
|
MATH_FUN_2(pow, pow)
|
|
/// \function exp(x)
|
|
MATH_FUN_1(exp, exp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
/// \function expm1(x)
|
|
MATH_FUN_1(expm1, expm1)
|
|
/// \function log2(x)
|
|
MATH_FUN_1_ERRCOND(log2, log2, (x <= (mp_float_t)0.0))
|
|
/// \function log10(x)
|
|
MATH_FUN_1_ERRCOND(log10, log10, (x <= (mp_float_t)0.0))
|
|
/// \function cosh(x)
|
|
MATH_FUN_1(cosh, cosh)
|
|
/// \function sinh(x)
|
|
MATH_FUN_1(sinh, sinh)
|
|
/// \function tanh(x)
|
|
MATH_FUN_1(tanh, tanh)
|
|
/// \function acosh(x)
|
|
MATH_FUN_1(acosh, acosh)
|
|
/// \function asinh(x)
|
|
MATH_FUN_1(asinh, asinh)
|
|
/// \function atanh(x)
|
|
MATH_FUN_1(atanh, atanh)
|
|
#endif
|
|
/// \function cos(x)
|
|
MATH_FUN_1(cos, cos)
|
|
/// \function sin(x)
|
|
MATH_FUN_1(sin, sin)
|
|
/// \function tan(x)
|
|
MATH_FUN_1(tan, tan)
|
|
/// \function acos(x)
|
|
MATH_FUN_1(acos, acos)
|
|
/// \function asin(x)
|
|
MATH_FUN_1(asin, asin)
|
|
/// \function atan(x)
|
|
MATH_FUN_1(atan, atan)
|
|
/// \function atan2(y, x)
|
|
MATH_FUN_2(atan2, atan2)
|
|
/// \function ceil(x)
|
|
MATH_FUN_1_TO_INT(ceil, ceil)
|
|
/// \function copysign(x, y)
|
|
MATH_FUN_2(copysign, copysign)
|
|
/// \function fabs(x)
|
|
MATH_FUN_1(fabs, fabs)
|
|
/// \function floor(x)
|
|
MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
|
|
/// \function fmod(x, y)
|
|
MATH_FUN_2(fmod, fmod)
|
|
/// \function isfinite(x)
|
|
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
|
|
/// \function isinf(x)
|
|
MATH_FUN_1_TO_BOOL(isinf, isinf)
|
|
/// \function isnan(x)
|
|
MATH_FUN_1_TO_BOOL(isnan, isnan)
|
|
/// \function trunc(x)
|
|
MATH_FUN_1_TO_INT(trunc, trunc)
|
|
/// \function ldexp(x, exp)
|
|
MATH_FUN_2(ldexp, ldexp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
/// \function erf(x)
|
|
/// Return the error function of `x`.
|
|
MATH_FUN_1(erf, erf)
|
|
/// \function erfc(x)
|
|
/// Return the complementary error function of `x`.
|
|
MATH_FUN_1(erfc, erfc)
|
|
/// \function gamma(x)
|
|
/// Return the gamma function of `x`.
|
|
MATH_FUN_1(gamma, tgamma)
|
|
/// \function lgamma(x)
|
|
/// return the natural logarithm of the gamma function of `x`.
|
|
MATH_FUN_1(lgamma, lgamma)
|
|
#endif
|
|
//TODO: factorial, fsum
|
|
|
|
// Function that takes a variable number of arguments
|
|
|
|
// log(x[, base])
|
|
STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
|
|
mp_float_t x = mp_obj_get_float(args[0]);
|
|
if (x <= (mp_float_t)0.0) {
|
|
math_error();
|
|
}
|
|
mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
|
|
if (n_args == 1) {
|
|
return mp_obj_new_float(l);
|
|
} else {
|
|
mp_float_t base = mp_obj_get_float(args[1]);
|
|
if (base <= (mp_float_t)0.0) {
|
|
math_error();
|
|
}
|
|
return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
|
|
|
|
// Functions that return a tuple
|
|
|
|
/// \function frexp(x)
|
|
/// Converts a floating-point number to fractional and integral components.
|
|
STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
|
|
int int_exponent = 0;
|
|
mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(significand);
|
|
tuple[1] = mp_obj_new_int(int_exponent);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
|
|
|
|
/// \function modf(x)
|
|
STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
|
|
mp_float_t int_part = 0.0;
|
|
mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(fractional_part);
|
|
tuple[1] = mp_obj_new_float(int_part);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
|
|
|
|
// Angular conversions
|
|
|
|
/// \function radians(x)
|
|
STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
|
|
|
|
/// \function degrees(x)
|
|
STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
|
|
|
|
STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
|
|
{ MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
|
|
{ MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
|
|
{ MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
|
|
#endif
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
|
|
|
|
const mp_obj_module_t mp_module_math = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&mp_module_math_globals,
|
|
};
|
|
|
|
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
|