circuitpython/ports/mimxrt10xx/common-hal/busio/UART.c

515 lines
17 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* SPDX-FileCopyrightText: Copyright (c) 2016 Damien P. George
* Copyright (c) 2019 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/microcontroller/__init__.h"
#include "shared-bindings/busio/UART.h"
#include "mpconfigport.h"
#include "shared/runtime/interrupt_char.h"
#include "supervisor/shared/tick.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "periph.h"
#include "sdk/drivers/lpuart/fsl_lpuart.h"
#include "sdk/drivers/igpio/fsl_gpio.h"
// ==========================================================
// Debug code
// ==========================================================
#define ENABLE_DEBUG_PRINTING 0
#if ENABLE_DEBUG_PRINTING
#define DBGPrintf mp_printf
#else
#define DBGPrintf(p,...)
#endif
// arrays use 0 based numbering: UART1 is stored at index 0
STATIC bool reserved_uart[MP_ARRAY_SIZE(mcu_uart_banks)];
STATIC bool never_reset_uart[MP_ARRAY_SIZE(mcu_uart_banks)];
#if IMXRT11XX
#define UART_CLOCK_FREQ (24000000)
#else
#define UART_CLOCK_FREQ (CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 6U) / (CLOCK_GetDiv(kCLOCK_UartDiv) + 1U)
#endif
static void config_periph_pin(const mcu_periph_obj_t *periph) {
IOMUXC_SetPinMux(
periph->pin->mux_reg, periph->mux_mode,
periph->input_reg, periph->input_idx,
0,
0);
IOMUXC_SetPinConfig(0, 0, 0, 0,
periph->pin->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_PUS(1)
#if IMXRT10XX
| IOMUXC_SW_PAD_CTL_PAD_HYS(0)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(1)
#endif
| IOMUXC_SW_PAD_CTL_PAD_PUE(1)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_DSE(6)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
}
STATIC void LPUART_UserCallback(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *user_data) {
busio_uart_obj_t *self = (busio_uart_obj_t *)user_data;
if (status == kStatus_LPUART_RxIdle) {
self->rx_ongoing = false;
}
}
void uart_reset(void) {
for (uint i = 0; i < MP_ARRAY_SIZE(mcu_uart_banks); i++) {
if (never_reset_uart[i]) {
continue;
}
reserved_uart[i] = false;
LPUART_Deinit(mcu_uart_banks[i]);
}
}
void common_hal_busio_uart_never_reset(busio_uart_obj_t *self) {
never_reset_uart[self->index] = true;
common_hal_never_reset_pin(self->tx);
common_hal_never_reset_pin(self->rx);
common_hal_never_reset_pin(self->rts);
common_hal_never_reset_pin(self->cts);
common_hal_never_reset_pin(self->rs485_dir);
}
void common_hal_busio_uart_construct(busio_uart_obj_t *self,
const mcu_pin_obj_t *tx, const mcu_pin_obj_t *rx,
const mcu_pin_obj_t *rts, const mcu_pin_obj_t *cts,
const mcu_pin_obj_t *rs485_dir, bool rs485_invert,
uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop,
mp_float_t timeout, uint16_t receiver_buffer_size, byte *receiver_buffer,
bool sigint_enabled) {
self->baudrate = baudrate;
self->character_bits = (uint8_t)mp_arg_validate_int_range(bits, 7, 8, MP_QSTR_bits);
self->timeout_ms = timeout * 1000;
DBGPrintf(&mp_plat_print, "uart_construct: tx:%p rx:%p rts:%p cts:%p rs485:%p\n", tx, rx, rts, cts, rs485_dir);
// We are transmitting one direction if one pin is NULL and the other isn't.
bool is_onedirection = (rx == NULL) != (tx == NULL);
bool uart_taken = false;
bool use_rts_for_rs485 = false;
const uint32_t rx_count = MP_ARRAY_SIZE(mcu_uart_rx_list);
const uint32_t tx_count = MP_ARRAY_SIZE(mcu_uart_tx_list);
const mcu_periph_obj_t *tx_config = NULL;
const mcu_periph_obj_t *rx_config = NULL;
const mcu_periph_obj_t *rts_config = NULL;
const mcu_periph_obj_t *cts_config = NULL;
// RX loop handles rx only, or both rx and tx
if (rx != NULL) {
for (uint32_t i = 0; i < rx_count; ++i) {
if (mcu_uart_rx_list[i].pin != rx) {
continue;
}
// If TX is on, keep looking, else stop
if (tx != NULL) {
for (uint32_t j = 0; j < tx_count; ++j) {
if (mcu_uart_tx_list[j].pin != tx ||
mcu_uart_tx_list[j].bank_idx != mcu_uart_rx_list[i].bank_idx) {
continue;
}
// If UART is taken, break (pins never have >1 periph)
if (reserved_uart[mcu_uart_rx_list[i].bank_idx - 1]) {
uart_taken = true;
break;
}
rx_config = &mcu_uart_rx_list[i];
tx_config = &mcu_uart_tx_list[j];
break;
}
if (tx_config != NULL || uart_taken) {
break;
}
} else {
if (reserved_uart[mcu_uart_rx_list[i].bank_idx - 1]) {
uart_taken = true;
break;
}
rx_config = &mcu_uart_rx_list[i];
}
}
} else if (tx != NULL) {
// TX only case
for (uint32_t i = 0; i < tx_count; ++i) {
if (mcu_uart_tx_list[i].pin != tx) {
continue;
}
if (reserved_uart[mcu_uart_tx_list[i].bank_idx - 1]) {
uart_taken = true;
break;
}
tx_config = &mcu_uart_tx_list[i];
break;
}
} else {
// TX and RX are both None. But this is already handled in shared-bindings, so
// we won't get here.
}
if (rx && !rx_config) {
raise_ValueError_invalid_pin_name(MP_QSTR_rx);
}
if (tx && !tx_config) {
raise_ValueError_invalid_pin_name(MP_QSTR_tx);
}
if (uart_taken) {
mp_raise_ValueError(translate("Hardware in use, try alternative pins"));
}
if (is_onedirection && ((rts != NULL) || (cts != NULL))) {
mp_raise_ValueError(translate("Both RX and TX required for flow control"));
}
// Filter for sane settings for RS485
if (rs485_dir != NULL) {
DBGPrintf(&mp_plat_print, "\t(485 pin): gpio:%p #:%x Mux: %x %x cfg:%x reset:%x %x\n",
rs485_dir->gpio, rs485_dir->number, rs485_dir->mux_idx, rs485_dir->mux_reg, rs485_dir->cfg_reg,
rs485_dir->mux_reset, rs485_dir->pad_reset);
if ((rts != NULL) || (cts != NULL)) {
mp_raise_ValueError(translate("Cannot specify RTS or CTS in RS485 mode"));
}
// For IMXRT the RTS pin is used for RS485 direction ???? - Can be will try
// it if this is an rts pin.
} else {
if (rs485_invert) {
mp_raise_ValueError(translate("RS485 inversion specified when not in RS485 mode"));
}
}
// Now check for RTS/CTS (or overloaded RS485 direction) pin(s)
const uint32_t rts_count = MP_ARRAY_SIZE(mcu_uart_rts_list);
const uint32_t cts_count = MP_ARRAY_SIZE(mcu_uart_cts_list);
if ((rts != NULL) || (rs485_dir != NULL)) {
for (uint32_t i = 0; i < rts_count; ++i) {
if (mcu_uart_rts_list[i].bank_idx == rx_config->bank_idx) {
if (mcu_uart_rts_list[i].pin == rts) {
rts_config = &mcu_uart_rts_list[i];
break;
} else if (mcu_uart_rts_list[i].pin == rs485_dir) {
rts_config = &mcu_uart_rts_list[i];
use_rts_for_rs485 = true;
rts = rs485_dir;
rs485_dir = NULL;
break;
}
}
}
if ((rts != NULL) && (rts_config == NULL)) {
raise_ValueError_invalid_pin_name(MP_QSTR_rts);
}
}
if (cts != NULL) {
for (uint32_t i = 0; i < cts_count; ++i) {
if (mcu_uart_cts_list[i].bank_idx == tx_config->bank_idx) {
if (mcu_uart_cts_list[i].pin == cts) {
cts_config = &mcu_uart_cts_list[i];
break;
}
}
}
if (cts_config == NULL) {
raise_ValueError_invalid_pin_name(MP_QSTR_cts);
}
}
if (self->rx) {
self->index = rx_config->bank_idx - 1;
} else {
assert(self->tx);
self->index = tx_config->bank_idx - 1;
}
self->uart = mcu_uart_banks[self->index];
assert(self->uart);
if (rx_config) {
config_periph_pin(rx_config);
self->rx = rx;
}
if (tx_config) {
config_periph_pin(tx_config);
self->tx = tx;
}
if (rts_config) {
config_periph_pin(rts_config);
self->rts = rts;
}
if (cts_config) {
config_periph_pin(cts_config);
self->cts = cts;
}
if (rs485_dir) {
DBGPrintf(&mp_plat_print, "\tInit rs485 pin\n");
// lets configure this pin as standard GPIO output pin.
claim_pin(rs485_dir);
#define IOMUXC_SW_MUX_CTL_PAD_MUX_MODE_ALT5 5U
IOMUXC_SetPinMux(rs485_dir->mux_reg, IOMUXC_SW_MUX_CTL_PAD_MUX_MODE_ALT5, 0, 0, 0, 0);
DBGPrintf(&mp_plat_print, "\tAfter IOMUXC_SetPinMux\n");
IOMUXC_SetPinConfig(0, 0, 0, 0, rs485_dir->cfg_reg,
IOMUXC_SW_PAD_CTL_PAD_PUS(0)
#if IMXRT10XX
| IOMUXC_SW_PAD_CTL_PAD_HYS(1)
| IOMUXC_SW_PAD_CTL_PAD_PKE(1)
| IOMUXC_SW_PAD_CTL_PAD_SPEED(2)
#endif
| IOMUXC_SW_PAD_CTL_PAD_PUE(0)
| IOMUXC_SW_PAD_CTL_PAD_ODE(0)
| IOMUXC_SW_PAD_CTL_PAD_DSE(1)
| IOMUXC_SW_PAD_CTL_PAD_SRE(0));
DBGPrintf(&mp_plat_print, "\tAfter IOMUXC_SetPinConfig\n");
const gpio_pin_config_t config = { kGPIO_DigitalOutput, rs485_invert, kGPIO_NoIntmode };
GPIO_PinInit(rs485_dir->gpio, rs485_dir->number, &config);
DBGPrintf(&mp_plat_print, "\tAfter GPIO_PinInit\n");
self->rs485_dir = rs485_dir;
self->rs485_invert = rs485_invert;
}
lpuart_config_t config = { 0 };
LPUART_GetDefaultConfig(&config);
config.dataBitsCount = self->character_bits == 8 ? kLPUART_EightDataBits : kLPUART_SevenDataBits;
config.baudRate_Bps = self->baudrate;
config.enableTx = self->tx != NULL;
config.enableRx = self->rx != NULL;
config.enableRxRTS = self->rts != NULL;
config.enableTxCTS = self->cts != NULL;
if (self->rts != NULL) {
claim_pin(self->rts);
}
if (self->cts != NULL) {
claim_pin(self->cts);
}
LPUART_Init(self->uart, &config, UART_CLOCK_FREQ);
// Before we init, setup RS485 direction pin
// ..unfortunately this isn't done by the driver library
uint32_t modir = (self->uart->MODIR) & ~(LPUART_MODIR_TXRTSPOL_MASK | LPUART_MODIR_TXRTSE_MASK);
if (use_rts_for_rs485) {
modir |= LPUART_MODIR_TXRTSE_MASK;
if (rs485_invert) {
modir |= LPUART_MODIR_TXRTSPOL_MASK;
}
}
self->uart->MODIR = modir;
if (self->tx != NULL) {
claim_pin(self->tx);
}
if (self->rx != NULL) {
if (receiver_buffer == NULL) {
self->ringbuf = gc_alloc(receiver_buffer_size, false, true /*long-lived*/);
} else {
self->ringbuf = receiver_buffer;
}
if (!self->ringbuf) {
LPUART_Deinit(self->uart);
m_malloc_fail(receiver_buffer_size);
}
LPUART_TransferCreateHandle(self->uart, &self->handle, LPUART_UserCallback, self);
// Pass actual allocated size; the LPUART routines are cognizant that
// the capacity is one less than the size.
LPUART_TransferStartRingBuffer(self->uart, &self->handle, self->ringbuf, receiver_buffer_size);
claim_pin(self->rx);
}
DBGPrintf(&mp_plat_print, "\t<< Init completed >>\n");
}
bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) {
return self->rx == NULL && self->tx == NULL;
}
void common_hal_busio_uart_deinit(busio_uart_obj_t *self) {
if (common_hal_busio_uart_deinited(self)) {
return;
}
reserved_uart[self->index] = false;
never_reset_uart[self->index] = false;
LPUART_Deinit(self->uart);
gc_free(self->ringbuf);
common_hal_reset_pin(self->rx);
common_hal_reset_pin(self->tx);
common_hal_reset_pin(self->cts);
common_hal_reset_pin(self->rts);
common_hal_reset_pin(self->rs485_dir);
self->rx = NULL;
self->tx = NULL;
self->cts = NULL;
self->rts = NULL;
self->rs485_dir = NULL;
}
// Read characters.
size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) {
if (self->rx == NULL) {
mp_raise_ValueError(translate("No RX pin"));
}
if (len == 0) {
// Nothing to read.
return 0;
}
lpuart_transfer_t xfer = {
.data = data,
.dataSize = len,
};
self->rx_ongoing = true;
LPUART_TransferReceiveNonBlocking(self->uart, &self->handle, &xfer, NULL);
uint64_t start_ticks = supervisor_ticks_ms64();
// Wait for all bytes received or timeout
while (self->rx_ongoing && (supervisor_ticks_ms64() - start_ticks < self->timeout_ms)) {
RUN_BACKGROUND_TASKS;
// Allow user to break out of a timeout with a KeyboardInterrupt.
if (mp_hal_is_interrupted()) {
break;
}
}
// if we timed out, stop the transfer
if (self->rx_ongoing) {
uint32_t recvd = 0;
LPUART_TransferGetReceiveCount(self->uart, &self->handle, &recvd);
LPUART_TransferAbortReceive(self->uart, &self->handle);
if (recvd == 0) {
*errcode = EAGAIN;
return MP_STREAM_ERROR;
}
return recvd;
}
// No data left, we got it all
if (self->handle.rxData == NULL) {
return len;
}
// The only place we can reliably tell how many bytes have been received is from the current
// wp in the handle (because the abort nukes rxDataSize, and reading it before abort is a race.)
if (self->handle.rxData > data) {
return self->handle.rxData - data;
} else {
return len;
}
}
// Write characters.
size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) {
if (self->tx == NULL) {
mp_raise_ValueError(translate("No TX pin"));
}
if (self->rs485_dir && len) {
GPIO_PinWrite(self->rs485_dir->gpio, self->rs485_dir->number, !self->rs485_invert);
LPUART_WriteBlocking(self->uart, data, len);
// Probably need to verify we have completed output.
uint32_t dont_hang_count = 0xffff;
while (dont_hang_count--) {
if (LPUART_GetStatusFlags(self->uart) & kLPUART_TransmissionCompleteFlag) {
break; // hardware says it completed.
}
}
GPIO_PinWrite(self->rs485_dir->gpio, self->rs485_dir->number, self->rs485_invert);
} else {
// could combine with above but would go through two ifs
LPUART_WriteBlocking(self->uart, data, len);
}
return len;
}
uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) {
return self->baudrate;
}
void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) {
if (LPUART_SetBaudRate(self->uart, baudrate, UART_CLOCK_FREQ) == kStatus_Success) {
self->baudrate = baudrate;
}
}
mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) {
return (mp_float_t)(self->timeout_ms / 1000.0f);
}
void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) {
self->timeout_ms = timeout * 1000;
}
uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) {
return LPUART_TransferGetRxRingBufferLength(self->uart, &self->handle);
}
void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) {
self->handle.rxRingBufferHead = self->handle.rxRingBufferTail;
}
bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) {
if (self->tx == NULL) {
return false;
}
return LPUART_GetStatusFlags(self->uart) & kLPUART_TxDataRegEmptyFlag;
}