circuitpython/stm/main.c

1193 lines
35 KiB
C

#include <stdio.h>
#include <stm32f4xx.h>
#include <stm32f4xx_rcc.h>
#include <stm32f4xx_syscfg.h>
#include <stm32f4xx_gpio.h>
#include <stm32f4xx_exti.h>
#include <stm32f4xx_tim.h>
#include <stm32f4xx_pwr.h>
#include <stm32f4xx_rtc.h>
#include <stm32f4xx_usart.h>
#include <stm32f4xx_rng.h>
#include <stm_misc.h>
#include "std.h"
#include "misc.h"
#include "ff.h"
#include "mpconfig.h"
#include "mpqstr.h"
#include "nlr.h"
#include "misc.h"
#include "lexer.h"
#include "lexerfatfs.h"
#include "parse.h"
#include "obj.h"
#include "compile.h"
#include "runtime0.h"
#include "runtime.h"
#include "repl.h"
#include "gc.h"
#include "systick.h"
#include "led.h"
#include "servo.h"
#include "lcd.h"
#include "storage.h"
#include "mma.h"
#include "usart.h"
#include "usb.h"
#include "timer.h"
#include "audio.h"
#include "pybwlan.h"
#include "i2c.h"
#include "usrsw.h"
int errno;
extern uint32_t _heap_start;
static FATFS fatfs0;
void flash_error(int n) {
for (int i = 0; i < n; i++) {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_R2, 0);
sys_tick_delay_ms(250);
led_state(PYB_LED_R1, 0);
led_state(PYB_LED_R2, 1);
sys_tick_delay_ms(250);
}
led_state(PYB_LED_R2, 0);
}
static void impl02_c_version(void) {
int x = 0;
while (x < 400) {
int y = 0;
while (y < 400) {
volatile int z = 0;
while (z < 400) {
z = z + 1;
}
y = y + 1;
}
x = x + 1;
}
}
void __fatal_error(const char *msg) {
lcd_print_strn("\nFATAL ERROR:\n", 14);
lcd_print_strn(msg, strlen(msg));
for (;;) {
flash_error(1);
}
}
static qstr pyb_config_source_dir = 0;
static qstr pyb_config_main = 0;
mp_obj_t pyb_source_dir(mp_obj_t source_dir) {
pyb_config_source_dir = mp_obj_get_qstr(source_dir);
return mp_const_none;
}
mp_obj_t pyb_main(mp_obj_t main) {
pyb_config_main = mp_obj_get_qstr(main);
return mp_const_none;
}
// sync all file systems
mp_obj_t pyb_sync(void) {
storage_flush();
return mp_const_none;
}
mp_obj_t pyb_delay(mp_obj_t count) {
sys_tick_delay_ms(mp_obj_get_int(count));
return mp_const_none;
}
mp_obj_t pyb_led(mp_obj_t state) {
led_state(PYB_LED_G1, rt_is_true(state));
return state;
}
/*
void g(uint i) {
printf("g:%d\n", i);
if (i & 1) {
nlr_jump((void*)(42 + i));
}
}
void f(void) {
nlr_buf_t nlr;
int i;
for (i = 0; i < 4; i++) {
printf("f:loop:%d:%p\n", i, &nlr);
if (nlr_push(&nlr) == 0) {
// normal
//printf("a:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
g(i);
printf("f:lp:%d:nrm\n", i);
nlr_pop();
} else {
// nlr
//printf("b:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
printf("f:lp:%d:nlr:%d\n", i, (int)nlr.ret_val);
}
}
}
void nlr_test(void) {
f(1);
}
*/
void fatality(void) {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_G1, 1);
led_state(PYB_LED_R2, 1);
led_state(PYB_LED_G2, 1);
}
static const char fresh_boot_py[] =
"# boot.py -- run on boot-up\n"
"# can run arbitrary Python, but best to keep it minimal\n"
"\n"
"pyb.source_dir('/src')\n"
"pyb.main('main.py')\n"
"#pyb.usb_usr('VCP')\n"
"#pyb.usb_msd(True, 'dual partition')\n"
"#pyb.flush_cache(False)\n"
"#pyb.error_log('error.txt')\n"
;
static const char fresh_main_py[] =
"# main.py -- put your code here!\n"
;
static const char *help_text =
"Welcome to Micro Python!\n\n"
"This is a *very* early version of Micro Python and has minimal functionality.\n\n"
"Specific commands for the board:\n"
" pyb.info() -- print some general information\n"
" pyb.gc() -- run the garbage collector\n"
" pyb.delay(<n>) -- wait for n milliseconds\n"
" pyb.Led(<n>) -- create Led object for LED n (n=1,2)\n"
" Led methods: on(), off()\n"
" pyb.Servo(<n>) -- create Servo object for servo n (n=1,2,3,4)\n"
" Servo methods: angle(<x>)\n"
" pyb.switch() -- return True/False if switch pressed or not\n"
" pyb.accel() -- get accelerometer values\n"
" pyb.rand() -- get a 16-bit random number\n"
;
// get some help about available functions
static mp_obj_t pyb_help(void) {
printf("%s", help_text);
return mp_const_none;
}
// get lots of info about the board
static mp_obj_t pyb_info(void) {
// get and print unique id; 96 bits
{
byte *id = (byte*)0x1fff7a10;
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
}
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
{
RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks);
printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
}
// to print info about memory
{
extern void *_sidata;
extern void *_sdata;
extern void *_edata;
extern void *_sbss;
extern void *_ebss;
extern void *_estack;
extern void *_etext;
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_estack=%p\n", &_estack);
printf("_etext=%p\n", &_etext);
printf("_heap_start=%p\n", &_heap_start);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" %lu total\n", info.total);
printf(" %lu : %lu\n", info.used, info.free);
printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
}
// free space on flash
{
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
}
return mp_const_none;
}
// SD card test
static mp_obj_t pyb_sd_test(void) {
extern void sdio_init(void);
sdio_init();
return mp_const_none;
}
static void SYSCLKConfig_STOP(void) {
/* After wake-up from STOP reconfigure the system clock */
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON);
/* Wait till HSE is ready */
while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) {
}
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {
}
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while (RCC_GetSYSCLKSource() != 0x08) {
}
}
static mp_obj_t pyb_stop(void) {
PWR_EnterSTANDBYMode();
//PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this
/* Enter Stop Mode */
PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);
/* Configures system clock after wake-up from STOP: enable HSE, PLL and select
* PLL as system clock source (HSE and PLL are disabled in STOP mode) */
SYSCLKConfig_STOP();
//PWR_FlashPowerDownCmd(DISABLE);
return mp_const_none;
}
static mp_obj_t pyb_standby(void) {
PWR_EnterSTANDBYMode();
return mp_const_none;
}
char *strdup(const char *str) {
uint32_t len = strlen(str);
char *s2 = m_new(char, len + 1);
memcpy(s2, str, len);
s2[len] = 0;
return s2;
}
#define READLINE_HIST_SIZE (8)
static const char *readline_hist[READLINE_HIST_SIZE] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
void stdout_tx_str(const char *str) {
usart_tx_str(str);
usb_vcp_send_str(str);
}
int readline(vstr_t *line, const char *prompt) {
stdout_tx_str(prompt);
int len = vstr_len(line);
int escape = 0;
int hist_num = 0;
for (;;) {
char c;
for (;;) {
if (usb_vcp_rx_any() != 0) {
c = usb_vcp_rx_get();
break;
} else if (usart_rx_any()) {
c = usart_rx_char();
break;
}
sys_tick_delay_ms(1);
if (storage_needs_flush()) {
storage_flush();
}
}
if (escape == 0) {
if (c == 4 && vstr_len(line) == len) {
return 0;
} else if (c == '\r') {
stdout_tx_str("\r\n");
for (int i = READLINE_HIST_SIZE - 1; i > 0; i--) {
readline_hist[i] = readline_hist[i - 1];
}
readline_hist[0] = strdup(vstr_str(line));
return 1;
} else if (c == 27) {
escape = true;
} else if (c == 127) {
if (vstr_len(line) > len) {
vstr_cut_tail(line, 1);
stdout_tx_str("\b \b");
}
} else if (32 <= c && c <= 126) {
vstr_add_char(line, c);
stdout_tx_str(line->buf + line->len - 1);
}
} else if (escape == 1) {
if (c == '[') {
escape = 2;
} else {
escape = 0;
}
} else if (escape == 2) {
escape = 0;
if (c == 'A') {
// up arrow
if (hist_num < READLINE_HIST_SIZE && readline_hist[hist_num] != NULL) {
// erase line
for (int i = line->len - len; i > 0; i--) {
stdout_tx_str("\b \b");
}
// set line to history
line->len = len;
vstr_add_str(line, readline_hist[hist_num]);
// draw line
stdout_tx_str(readline_hist[hist_num]);
// increase hist num
hist_num += 1;
}
}
} else {
escape = 0;
}
sys_tick_delay_ms(10);
}
}
void do_repl(void) {
stdout_tx_str("Micro Python build <git hash> on 2/1/2014; PYBv3 with STM32F405RG\r\n");
stdout_tx_str("Type \"help()\" for more information.\r\n");
vstr_t line;
vstr_init(&line);
for (;;) {
vstr_reset(&line);
int ret = readline(&line, ">>> ");
if (ret == 0) {
// EOF
break;
}
if (vstr_len(&line) == 0) {
continue;
}
if (mp_repl_is_compound_stmt(vstr_str(&line))) {
for (;;) {
vstr_add_char(&line, '\n');
int len = vstr_len(&line);
int ret = readline(&line, "... ");
if (ret == 0 || vstr_len(&line) == len) {
// done entering compound statement
break;
}
}
}
mp_lexer_t *lex = mp_lexer_new_from_str_len("<stdin>", vstr_str(&line), vstr_len(&line), 0);
mp_parse_node_t pn = mp_parse(lex, MP_PARSE_SINGLE_INPUT);
mp_lexer_free(lex);
if (pn != MP_PARSE_NODE_NULL) {
mp_obj_t module_fun = mp_compile(pn, true);
if (module_fun != mp_const_none) {
nlr_buf_t nlr;
uint32_t start = sys_tick_counter;
if (nlr_push(&nlr) == 0) {
rt_call_function_0(module_fun);
nlr_pop();
// optional timing
if (0) {
uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly
printf("(took %lu ms)\n", ticks);
}
} else {
// uncaught exception
mp_obj_print((mp_obj_t)nlr.ret_val);
printf("\n");
}
}
}
}
stdout_tx_str("\r\n");
}
bool do_file(const char *filename) {
mp_lexer_file_buf_t fb;
mp_lexer_t *lex = mp_lexer_new_from_file(filename, &fb);
if (lex == NULL) {
printf("could not open file '%s' for reading\n", filename);
return false;
}
mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT);
mp_lexer_free(lex);
if (pn == MP_PARSE_NODE_NULL) {
return false;
}
mp_obj_t module_fun = mp_compile(pn, false);
if (module_fun == mp_const_none) {
return false;
}
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
rt_call_function_0(module_fun);
nlr_pop();
return true;
} else {
// uncaught exception
mp_obj_print((mp_obj_t)nlr.ret_val);
printf("\n");
return false;
}
}
#define RAM_START (0x20000000) // fixed for chip
#define HEAP_END (0x2001c000) // tunable
#define RAM_END (0x20020000) // fixed for chip
void gc_helper_get_regs_and_clean_stack(machine_uint_t *regs, machine_uint_t heap_end);
void gc_collect(void) {
uint32_t start = sys_tick_counter;
gc_collect_start();
gc_collect_root((void**)RAM_START, (((uint32_t)&_heap_start) - RAM_START) / 4);
machine_uint_t regs[10];
gc_helper_get_regs_and_clean_stack(regs, HEAP_END);
gc_collect_root((void**)HEAP_END, (RAM_END - HEAP_END) / 4); // will trace regs since they now live in this function on the stack
gc_collect_end();
uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly
if (0) {
// print GC info
gc_info_t info;
gc_info(&info);
printf("GC@%lu %lums\n", start, ticks);
printf(" %lu total\n", info.total);
printf(" %lu : %lu\n", info.used, info.free);
printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
}
}
mp_obj_t pyb_gc(void) {
gc_collect();
return mp_const_none;
}
mp_obj_t pyb_gpio(int n_args, mp_obj_t *args) {
//assert(1 <= n_args && n_args <= 2);
const char *pin_name = qstr_str(mp_obj_get_qstr(args[0]));
GPIO_TypeDef *port;
switch (pin_name[0]) {
case 'A': case 'a': port = GPIOA; break;
case 'B': case 'b': port = GPIOB; break;
case 'C': case 'c': port = GPIOC; break;
default: goto pin_error;
}
uint pin_num = 0;
for (const char *s = pin_name + 1; *s; s++) {
if (!('0' <= *s && *s <= '9')) {
goto pin_error;
}
pin_num = 10 * pin_num + *s - '0';
}
if (!(0 <= pin_num && pin_num <= 15)) {
goto pin_error;
}
if (n_args == 1) {
// get pin
if ((port->IDR & (1 << pin_num)) != (uint32_t)Bit_RESET) {
return MP_OBJ_NEW_SMALL_INT(1);
} else {
return MP_OBJ_NEW_SMALL_INT(0);
}
} else {
// set pin
if (rt_is_true(args[1])) {
// set pin high
port->BSRRL = 1 << pin_num;
} else {
// set pin low
port->BSRRH = 1 << pin_num;
}
return mp_const_none;
}
pin_error:
nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_ValueError, "pin %s does not exist", pin_name));
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio);
mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4);
uint8_t data[4];
data[0] = mp_obj_get_int(items[0]);
data[1] = mp_obj_get_int(items[1]);
data[2] = mp_obj_get_int(items[2]);
data[3] = mp_obj_get_int(items[3]);
usb_hid_send_report(data);
return mp_const_none;
}
static void rtc_init(void) {
uint32_t rtc_clksrc;
uint32_t timeout =10000;
/* Enable the PWR clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
/* Allow access to RTC */
PWR_BackupAccessCmd(ENABLE);
/* Enable the LSE OSC */
RCC_LSEConfig(RCC_LSE_ON);
/* Wait till LSE is ready */
while((RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) && (--timeout > 0)) {
}
/* If LSE timed out, use LSI instead */
if (timeout == 0) {
/* Enable the LSI OSC */
RCC_LSICmd(ENABLE);
/* Wait till LSI is ready */
while(RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET) {
}
/* Use LSI as the RTC Clock Source */
rtc_clksrc = RCC_RTCCLKSource_LSI;
} else {
/* Use LSE as the RTC Clock Source */
rtc_clksrc = RCC_RTCCLKSource_LSE;
}
/* Select the RTC Clock Source */
RCC_RTCCLKConfig(rtc_clksrc);
/* Note: LSI is around (32KHz), these dividers should work either way */
/* ck_spre(1Hz) = RTCCLK(LSE) /(uwAsynchPrediv + 1)*(uwSynchPrediv + 1)*/
uint32_t uwSynchPrediv = 0xFF;
uint32_t uwAsynchPrediv = 0x7F;
/* Enable the RTC Clock */
RCC_RTCCLKCmd(ENABLE);
/* Wait for RTC APB registers synchronisation */
RTC_WaitForSynchro();
/* Configure the RTC data register and RTC prescaler */
RTC_InitTypeDef RTC_InitStructure;
RTC_InitStructure.RTC_AsynchPrediv = uwAsynchPrediv;
RTC_InitStructure.RTC_SynchPrediv = uwSynchPrediv;
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
RTC_Init(&RTC_InitStructure);
// Set the date (BCD)
RTC_DateTypeDef RTC_DateStructure;
RTC_DateStructure.RTC_Year = 0x13;
RTC_DateStructure.RTC_Month = RTC_Month_October;
RTC_DateStructure.RTC_Date = 0x26;
RTC_DateStructure.RTC_WeekDay = RTC_Weekday_Saturday;
RTC_SetDate(RTC_Format_BCD, &RTC_DateStructure);
// Set the time (BCD)
RTC_TimeTypeDef RTC_TimeStructure;
RTC_TimeStructure.RTC_H12 = RTC_H12_AM;
RTC_TimeStructure.RTC_Hours = 0x01;
RTC_TimeStructure.RTC_Minutes = 0x53;
RTC_TimeStructure.RTC_Seconds = 0x00;
RTC_SetTime(RTC_Format_BCD, &RTC_TimeStructure);
// Indicator for the RTC configuration
//RTC_WriteBackupRegister(RTC_BKP_DR0, 0x32F2);
}
mp_obj_t pyb_rtc_read(void) {
RTC_TimeTypeDef RTC_TimeStructure;
RTC_GetTime(RTC_Format_BIN, &RTC_TimeStructure);
printf("%02d:%02d:%02d\n", RTC_TimeStructure.RTC_Hours, RTC_TimeStructure.RTC_Minutes, RTC_TimeStructure.RTC_Seconds);
return mp_const_none;
}
typedef struct _pyb_file_obj_t {
mp_obj_base_t base;
FIL fp;
} pyb_file_obj_t;
void file_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in) {
printf("<file %p>", self_in);
}
mp_obj_t file_obj_read(mp_obj_t self_in, mp_obj_t arg) {
pyb_file_obj_t *self = self_in;
int n = mp_obj_get_int(arg);
char *buf = m_new(char, n + 1);
UINT n_out;
f_read(&self->fp, buf, n, &n_out);
buf[n_out] = 0;
return mp_obj_new_str(qstr_from_str_take(buf, n + 1));
}
mp_obj_t file_obj_write(mp_obj_t self_in, mp_obj_t arg) {
pyb_file_obj_t *self = self_in;
const char *s = qstr_str(mp_obj_get_qstr(arg));
UINT n_out;
FRESULT res = f_write(&self->fp, s, strlen(s), &n_out);
if (res != FR_OK) {
printf("File error: could not write to file; error code %d\n", res);
} else if (n_out != strlen(s)) {
printf("File error: could not write all data to file; wrote %d / %d bytes\n", n_out, strlen(s));
}
return mp_const_none;
}
mp_obj_t file_obj_close(mp_obj_t self_in) {
pyb_file_obj_t *self = self_in;
f_close(&self->fp);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(file_obj_read_obj, file_obj_read);
static MP_DEFINE_CONST_FUN_OBJ_2(file_obj_write_obj, file_obj_write);
static MP_DEFINE_CONST_FUN_OBJ_1(file_obj_close_obj, file_obj_close);
// TODO gc hook to close the file if not already closed
static const mp_method_t file_methods[] = {
{ "read", &file_obj_read_obj },
{ "write", &file_obj_write_obj },
{ "close", &file_obj_close_obj },
{NULL, NULL},
};
static const mp_obj_type_t file_obj_type = {
{ &mp_const_type },
"File",
.print = file_obj_print,
.methods = file_methods,
};
mp_obj_t pyb_io_open(mp_obj_t o_filename, mp_obj_t o_mode) {
const char *filename = qstr_str(mp_obj_get_qstr(o_filename));
const char *mode = qstr_str(mp_obj_get_qstr(o_mode));
pyb_file_obj_t *self = m_new_obj(pyb_file_obj_t);
self->base.type = &file_obj_type;
if (mode[0] == 'r') {
// open for reading
FRESULT res = f_open(&self->fp, filename, FA_READ);
if (res != FR_OK) {
printf("FileNotFoundError: [Errno 2] No such file or directory: '%s'\n", filename);
return mp_const_none;
}
} else if (mode[0] == 'w') {
// open for writing, truncate the file first
FRESULT res = f_open(&self->fp, filename, FA_WRITE | FA_CREATE_ALWAYS);
if (res != FR_OK) {
printf("?FileError: could not create file: '%s'\n", filename);
return mp_const_none;
}
} else {
printf("ValueError: invalid mode: '%s'\n", mode);
return mp_const_none;
}
return self;
}
mp_obj_t pyb_rng_get(void) {
return mp_obj_new_int(RNG_GetRandomNumber() >> 16);
}
int main(void) {
// TODO disable JTAG
// update the SystemCoreClock variable
SystemCoreClockUpdate();
// set interrupt priority config to use all 4 bits for pre-empting
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);
// enable the CCM RAM and the GPIO's
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN;
// configure SDIO pins to be high to start with (apparently makes it more robust)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOC, &GPIO_InitStructure);
// Configure PD.02 CMD line
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_Init(GPIOD, &GPIO_InitStructure);
}
// basic sub-system init
sys_tick_init();
led_init();
rtc_init();
// turn on LED to indicate bootup
led_state(PYB_LED_G1, 1);
// more sub-system init
switch_init();
storage_init();
//usart_init(); disabled while wi-fi is enabled
int first_soft_reset = true;
soft_reset:
// GC init
gc_init(&_heap_start, (void*)HEAP_END);
// Micro Python init
qstr_init();
rt_init();
// LCD init
//lcd_init(); disabled while servos on PA0 PA1
// servo
servo_init();
// audio
//audio_init();
// timer
timer_init();
// RNG
if (1) {
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
RNG_Cmd(ENABLE);
}
// add some functions to the python namespace
{
rt_store_name(qstr_from_str_static("help"), rt_make_function_0(pyb_help));
mp_obj_t m = mp_obj_new_module(qstr_from_str_static("pyb"));
rt_store_attr(m, qstr_from_str_static("info"), rt_make_function_0(pyb_info));
rt_store_attr(m, qstr_from_str_static("sd_test"), rt_make_function_0(pyb_sd_test));
rt_store_attr(m, qstr_from_str_static("stop"), rt_make_function_0(pyb_stop));
rt_store_attr(m, qstr_from_str_static("standby"), rt_make_function_0(pyb_standby));
rt_store_attr(m, qstr_from_str_static("source_dir"), rt_make_function_1(pyb_source_dir));
rt_store_attr(m, qstr_from_str_static("main"), rt_make_function_1(pyb_main));
rt_store_attr(m, qstr_from_str_static("sync"), rt_make_function_0(pyb_sync));
rt_store_attr(m, qstr_from_str_static("gc"), rt_make_function_0(pyb_gc));
rt_store_attr(m, qstr_from_str_static("delay"), rt_make_function_1(pyb_delay));
rt_store_attr(m, qstr_from_str_static("led"), rt_make_function_1(pyb_led));
rt_store_attr(m, qstr_from_str_static("switch"), (mp_obj_t)&pyb_switch_obj);
rt_store_attr(m, qstr_from_str_static("servo"), rt_make_function_2(pyb_servo_set));
rt_store_attr(m, qstr_from_str_static("pwm"), rt_make_function_2(pyb_pwm_set));
rt_store_attr(m, qstr_from_str_static("accel"), (mp_obj_t)&pyb_mma_read_obj);
rt_store_attr(m, qstr_from_str_static("mma_read"), (mp_obj_t)&pyb_mma_read_all_obj);
rt_store_attr(m, qstr_from_str_static("mma_mode"), (mp_obj_t)&pyb_mma_write_mode_obj);
rt_store_attr(m, qstr_from_str_static("hid"), rt_make_function_1(pyb_hid_send_report));
rt_store_attr(m, qstr_from_str_static("time"), rt_make_function_0(pyb_rtc_read));
rt_store_attr(m, qstr_from_str_static("rand"), rt_make_function_0(pyb_rng_get));
rt_store_attr(m, qstr_from_str_static("Led"), rt_make_function_1(pyb_Led));
rt_store_attr(m, qstr_from_str_static("Servo"), rt_make_function_1(pyb_Servo));
rt_store_attr(m, qstr_from_str_static("I2C"), rt_make_function_2(pyb_I2C));
rt_store_attr(m, qstr_from_str_static("gpio"), (mp_obj_t)&pyb_gpio_obj);
rt_store_attr(m, qstr_from_str_static("Usart"), rt_make_function_2(pyb_Usart));
rt_store_name(qstr_from_str_static("pyb"), m);
rt_store_name(qstr_from_str_static("open"), rt_make_function_2(pyb_io_open));
}
// print a message to the LCD
lcd_print_str(" micro py board\n");
// check if user switch held (initiates reset of filesystem)
bool reset_filesystem = false;
if (switch_get()) {
reset_filesystem = true;
for (int i = 0; i < 50; i++) {
if (!switch_get()) {
reset_filesystem = false;
break;
}
sys_tick_delay_ms(10);
}
}
// local filesystem init
{
// try to mount the flash
FRESULT res = f_mount(&fatfs0, "0:", 1);
if (!reset_filesystem && res == FR_OK) {
// mount sucessful
} else if (reset_filesystem || res == FR_NO_FILESYSTEM) {
// no filesystem, so create a fresh one
// TODO doesn't seem to work correctly when reset_filesystem is true...
// LED on to indicate creation of LFS
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
res = f_mkfs("0:", 0, 0);
if (res == FR_OK) {
// success creating fresh LFS
} else {
__fatal_error("could not create LFS");
}
// create src directory
res = f_mkdir("0:/src");
// ignore result from mkdir
// create empty main.py
FIL fp;
f_open(&fp, "0:/src/main.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
// TODO check we could write n bytes
f_close(&fp);
// keep LED on for at least 200ms
sys_tick_wait_at_least(stc, 200);
led_state(PYB_LED_R2, 0);
} else {
__fatal_error("could not access LFS");
}
}
// make sure we have a /boot.py
{
FILINFO fno;
FRESULT res = f_stat("0:/boot.py", &fno);
if (res == FR_OK) {
if (fno.fattrib & AM_DIR) {
// exists as a directory
// TODO handle this case
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
} else {
// exists as a file, good!
}
} else {
// doesn't exist, create fresh file
// LED on to indicate creation of boot.py
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
FIL fp;
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
// TODO check we could write n bytes
f_close(&fp);
// keep LED on for at least 200ms
sys_tick_wait_at_least(stc, 200);
led_state(PYB_LED_R2, 0);
}
}
// run /boot.py
if (!do_file("0:/boot.py")) {
flash_error(4);
}
// USB
usb_init();
// MMA
if (first_soft_reset) {
// init and reset address to zero
mma_init();
}
// turn boot-up LED off
led_state(PYB_LED_G1, 0);
// run main script
{
vstr_t *vstr = vstr_new();
vstr_add_str(vstr, "0:/");
if (pyb_config_source_dir == 0) {
vstr_add_str(vstr, "src");
} else {
vstr_add_str(vstr, qstr_str(pyb_config_source_dir));
}
vstr_add_char(vstr, '/');
if (pyb_config_main == 0) {
vstr_add_str(vstr, "main.py");
} else {
vstr_add_str(vstr, qstr_str(pyb_config_main));
}
if (!do_file(vstr_str(vstr))) {
flash_error(3);
}
vstr_free(vstr);
}
//printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init
//sys_tick_delay_ms(1000);
// Python!
if (0) {
//const char *pysrc = "def f():\n x=x+1\nprint(42)\n";
const char *pysrc =
// impl01.py
/*
"x = 0\n"
"while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n";
*/
// impl02.py
/*
"#@micropython.native\n"
"def f():\n"
" x = 0\n"
" while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n"
"f()\n";
*/
/*
"print('in python!')\n"
"x = 0\n"
"while x < 4:\n"
" pyb_led(True)\n"
" pyb_delay(201)\n"
" pyb_led(False)\n"
" pyb_delay(201)\n"
" x += 1\n"
"print('press me!')\n"
"while True:\n"
" pyb_led(pyb_sw())\n";
*/
/*
// impl16.py
"@micropython.asm_thumb\n"
"def delay(r0):\n"
" b(loop_entry)\n"
" label(loop1)\n"
" movw(r1, 55999)\n"
" label(loop2)\n"
" subs(r1, r1, 1)\n"
" cmp(r1, 0)\n"
" bgt(loop2)\n"
" subs(r0, r0, 1)\n"
" label(loop_entry)\n"
" cmp(r0, 0)\n"
" bgt(loop1)\n"
"print('in python!')\n"
"@micropython.native\n"
"def flash(n):\n"
" x = 0\n"
" while x < n:\n"
" pyb_led(True)\n"
" delay(249)\n"
" pyb_led(False)\n"
" delay(249)\n"
" x = x + 1\n"
"flash(20)\n";
*/
// impl18.py
/*
"# basic exceptions\n"
"x = 1\n"
"try:\n"
" x.a()\n"
"except:\n"
" print(x)\n";
*/
// impl19.py
"# for loop\n"
"def f():\n"
" for x in range(400):\n"
" for y in range(400):\n"
" for z in range(400):\n"
" pass\n"
"f()\n";
mp_lexer_t *lex = mp_lexer_new_from_str_len("<stdin>", pysrc, strlen(pysrc), 0);
// nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler
printf("lex; al=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT);
mp_lexer_free(lex);
if (pn != MP_PARSE_NODE_NULL) {
printf("pars;al=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
//parse_node_show(pn, 0);
mp_obj_t module_fun = mp_compile(pn, false);
printf("comp;al=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
if (module_fun == mp_const_none) {
printf("compile error\n");
} else {
// execute it!
// flash once
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_t ret = rt_call_function_0(module_fun);
printf("done! got: ");
mp_obj_print(ret);
printf("\n");
nlr_pop();
} else {
// uncaught exception
printf("exception: ");
mp_obj_print((mp_obj_t)nlr.ret_val);
printf("\n");
}
// flash once
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
sys_tick_delay_ms(1000);
printf("nalloc=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
}
}
}
// HID example
if (0) {
uint8_t data[4];
data[0] = 0;
data[1] = 1;
data[2] = -2;
data[3] = 0;
for (;;) {
if (switch_get()) {
data[0] = 0x01; // 0x04 is middle, 0x02 is right
} else {
data[0] = 0x00;
}
mma_start(0x4c /* MMA_ADDR */, 1);
mma_send_byte(0);
mma_restart(0x4c /* MMA_ADDR */, 0);
for (int i = 0; i <= 1; i++) {
int v = mma_read_ack() & 0x3f;
if (v & 0x20) {
v |= ~0x1f;
}
data[1 + i] = v;
}
mma_read_nack();
usb_hid_send_report(data);
sys_tick_delay_ms(15);
}
}
// wifi
//pyb_wlan_init();
//pyb_wlan_start();
do_repl();
// benchmark C version of impl02.py
if (0) {
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
impl02_c_version();
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
}
// SD card testing
if (0) {
extern void sdio_init(void);
sdio_init();
}
printf("PYB: sync filesystems\n");
pyb_sync();
printf("PYB: soft reboot\n");
first_soft_reset = false;
goto soft_reset;
}
double __aeabi_f2d(float x) {
// TODO
return 0.0;
}
float __aeabi_d2f(double x) {
// TODO
return 0.0;
}
double sqrt(double x) {
// TODO
return 0.0;
}
machine_float_t machine_sqrt(machine_float_t x) {
// TODO
return x;
}