iabdalkader d89a0606e0 renesas-ra: Add TinyUSB support.
Signed-off-by: iabdalkader <i.abdalkader@gmail.com>
2023-09-14 23:50:45 +10:00

531 lines
16 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2021 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "py/ringbuf.h"
#include "shared/runtime/interrupt_char.h"
#include "shared/runtime/mpirq.h"
#include "uart.h"
#include "irq.h"
#include "pendsv.h"
typedef int (*KEYEX_CB)(uint32_t d);
extern void NORETURN __fatal_error(const char *msg);
#if MICROPY_KBD_EXCEPTION
extern int mp_interrupt_char;
static KEYEX_CB keyex_cb[MICROPY_HW_MAX_UART] = {(KEYEX_CB)NULL};
static int chk_kbd_interrupt(int d) {
if (d == mp_interrupt_char) {
pendsv_kbd_intr();
return 1;
} else {
return 0;
}
}
static void set_kbd_interrupt(uint32_t ch, void *keyex) {
ra_sci_rxirq_disable(ch);
keyex_cb[ch] = (KEYEX_CB)keyex;
ra_sci_rxirq_enable(ch);
}
#endif
static void uart_rx_cb(uint32_t ch, int d) {
machine_uart_obj_t *self = MP_STATE_PORT(machine_uart_obj_all)[ch];
if (self == NULL) {
// UART object has not been set, so we can't do anything, not
// even disable the IRQ. This should never happen.
return;
}
#if MICROPY_KBD_EXCEPTION
if (keyex_cb[ch]) {
(*keyex_cb[ch])(d);
}
#endif
#if MICROPY_HW_ENABLE_UART_REPL
ringbuf_put(&stdin_ringbuf, d);
#endif
// Check the flags to see if the user handler should be called
if (self->mp_irq_trigger) {
mp_irq_handler(self->mp_irq_obj);
}
}
void uart_init0(void) {
}
// unregister all interrupt sources
void uart_deinit_all(void) {
for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(machine_uart_obj_all)); i++) {
machine_uart_obj_t *uart_obj = MP_STATE_PORT(machine_uart_obj_all)[i];
if (uart_obj != NULL && !uart_obj->is_static) {
uart_deinit(uart_obj);
MP_STATE_PORT(machine_uart_obj_all)[i] = NULL;
}
}
}
bool uart_exists(int uart_id) {
if (uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(machine_uart_obj_all))) {
// safeguard against machine_uart_obj_all array being configured too small
return false;
}
switch (uart_id) {
#if defined(MICROPY_HW_UART0_TX) && defined(MICROPY_HW_UART0_RX)
case HW_UART_0:
return true;
#endif
#if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX)
case HW_UART_1:
return true;
#endif
#if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX)
case HW_UART_2:
return true;
#endif
#if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX)
case HW_UART_3:
return true;
#endif
#if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX)
case HW_UART_4:
return true;
#endif
#if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX)
case HW_UART_5:
return true;
#endif
#if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX)
case HW_UART_6:
return true;
#endif
#if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX)
case HW_UART_7:
return true;
#endif
#if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX)
case HW_UART_8:
return true;
#endif
#if defined(MICROPY_HW_UART9_TX) && defined(MICROPY_HW_UART9_RX)
case HW_UART_9:
return true;
#endif
default:
return false;
}
}
// assumes Init parameters have been set up correctly
bool uart_init(machine_uart_obj_t *uart_obj,
uint32_t baudrate, uint32_t bits, uint32_t parity, uint32_t stop, uint32_t flow) {
uart_obj->baudrate = (uint32_t)baudrate;
uart_obj->bits = (uint8_t)bits;
uart_obj->parity = (uint8_t)parity;
uart_obj->stop = (uint8_t)stop;
uart_obj->flow = (uint8_t)flow;
const machine_pin_obj_t *pins[4] = {0};
switch (uart_obj->uart_id) {
#if defined(MICROPY_HW_UART0_TX) && defined(MICROPY_HW_UART0_RX)
case HW_UART_0:
pins[0] = MICROPY_HW_UART0_TX;
pins[1] = MICROPY_HW_UART0_RX;
#if defined(MICROPY_HW_UART0_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART0_RTS;
}
#endif
#if defined(MICROPY_HW_UART0_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART0_CTS;
}
#endif
break;
#endif
#if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX)
case HW_UART_1:
pins[0] = MICROPY_HW_UART1_TX;
pins[1] = MICROPY_HW_UART1_RX;
#if defined(MICROPY_HW_UART1_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART1_RTS;
}
#endif
#if defined(MICROPY_HW_UART1_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART1_CTS;
}
#endif
break;
#endif
#if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX)
case HW_UART_2:
pins[0] = MICROPY_HW_UART2_TX;
pins[1] = MICROPY_HW_UART2_RX;
#if defined(MICROPY_HW_UART2_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART2_RTS;
}
#endif
#if defined(MICROPY_HW_UART2_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART2_CTS;
}
#endif
break;
#endif
#if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX)
case HW_UART_3:
pins[0] = MICROPY_HW_UART3_TX;
pins[1] = MICROPY_HW_UART3_RX;
#if defined(MICROPY_HW_UART3_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART3_RTS;
}
#endif
#if defined(MICROPY_HW_UART3_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART3_CTS;
}
#endif
break;
#endif
#if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX)
case HW_UART_4:
pins[0] = MICROPY_HW_UART4_TX;
pins[1] = MICROPY_HW_UART4_RX;
#if defined(MICROPY_HW_UART4_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART4_RTS;
}
#endif
#if defined(MICROPY_HW_UART4_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART4_CTS;
}
#endif
break;
#endif
#if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX)
case HW_UART_5:
pins[0] = MICROPY_HW_UART5_TX;
pins[1] = MICROPY_HW_UART5_RX;
#if defined(MICROPY_HW_UART5_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART5_RTS;
}
#endif
#if defined(MICROPY_HW_UART5_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART5_CTS;
}
#endif
break;
#endif
#if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX)
case HW_UART_6:
pins[0] = MICROPY_HW_UART6_TX;
pins[1] = MICROPY_HW_UART6_RX;
#if defined(MICROPY_HW_UART6_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART6_RTS;
}
#endif
#if defined(MICROPY_HW_UART6_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART6_CTS;
}
#endif
break;
#endif
#if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX)
case HW_UART_7:
pins[0] = MICROPY_HW_UART7_TX;
pins[1] = MICROPY_HW_UART7_RX;
#if defined(MICROPY_HW_UART7_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART7_RTS;
}
#endif
#if defined(MICROPY_HW_UART7_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART7_CTS;
}
#endif
break;
#endif
#if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX)
case HW_UART_8:
pins[0] = MICROPY_HW_UART8_TX;
pins[1] = MICROPY_HW_UART8_RX;
#if defined(MICROPY_HW_UART8_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART8_RTS;
}
#endif
#if defined(MICROPY_HW_UART8_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART8_CTS;
}
#endif
break;
#endif
#if defined(MICROPY_HW_UART9_TX) && defined(MICROPY_HW_UART9_RX)
case HW_UART_9:
pins[0] = MICROPY_HW_UART9_TX;
pins[1] = MICROPY_HW_UART9_RX;
#if defined(MICROPY_HW_UART9_RTS)
if (flow) {
pins[2] = MICROPY_HW_UART9_RTS;
}
#endif
#if defined(MICROPY_HW_UART9_CTS)
if (flow) {
pins[3] = MICROPY_HW_UART9_CTS;
}
#endif
break;
#endif
default:
// UART does not exist or is not configured for this board
return false;
}
uart_obj->tx = pins[0];
uart_obj->rx = pins[1];
uart_obj->rts = pins[2];
uart_obj->cts = pins[3];
if (flow && (uart_obj->rts != 0) && (uart_obj->cts != 0)) {
ra_sci_init_with_flow(uart_obj->uart_id, (uint32_t)uart_obj->tx->pin, (uint32_t)uart_obj->rx->pin, baudrate, bits, parity, stop, flow, (uint32_t)uart_obj->rts->pin, (uint32_t)uart_obj->cts->pin);
} else {
ra_sci_init(uart_obj->uart_id, (uint32_t)uart_obj->tx->pin, (uint32_t)uart_obj->rx->pin, baudrate, bits, parity, stop, flow);
}
ra_sci_rx_set_callback((int)uart_obj->uart_id, (SCI_CB)uart_rx_cb);
uart_obj->is_enabled = true;
uart_obj->attached_to_repl = false;
if (bits == 9 && parity == UART_PARITY_NONE) {
uart_obj->char_mask = 0x1ff;
uart_obj->char_width = CHAR_WIDTH_9BIT;
} else {
if (bits == 9 || parity == UART_PARITY_NONE) {
uart_obj->char_mask = 0xff;
} else {
uart_obj->char_mask = 0x7f;
}
uart_obj->char_width = CHAR_WIDTH_8BIT;
}
uart_obj->mp_irq_trigger = 0;
uart_obj->mp_irq_obj = NULL;
return true;
}
void uart_irq_config(machine_uart_obj_t *self, bool enable) {
if (self->mp_irq_trigger) {
if (enable) {
ra_sci_rxirq_enable(self->uart_id);
} else {
ra_sci_rxirq_disable(self->uart_id);
}
}
}
void uart_set_rxbuf(machine_uart_obj_t *self, size_t len, void *buf) {
// len = 0 (no interrupt) is not supported. static buf is used.
self->read_buf_len = len;
self->read_buf = buf;
if (len) {
int ch = (int)self->uart_id;
ra_sci_rxfifo_set(ch, (uint8_t *)buf, (uint32_t)len);
}
}
void uart_deinit(machine_uart_obj_t *self) {
self->is_enabled = false;
ra_sci_deinit(self->uart_id);
}
void uart_attach_to_repl(machine_uart_obj_t *self, bool attached) {
self->attached_to_repl = attached;
#if MICROPY_KBD_EXCEPTION
if (attached) {
set_kbd_interrupt((int)self->uart_id, (SCI_CB)chk_kbd_interrupt);
} else {
set_kbd_interrupt((int)self->uart_id, (SCI_CB)NULL);
}
#endif
}
mp_uint_t uart_rx_any(machine_uart_obj_t *self) {
int ch = (int)self->uart_id;
return ra_sci_rx_any(ch);
}
mp_uint_t uart_tx_avail(machine_uart_obj_t *self) {
int ch = (int)self->uart_id;
return ra_sci_tx_wait(ch);
}
mp_uint_t uart_tx_busy(machine_uart_obj_t *self) {
int ch = (int)self->uart_id;
return ra_sci_tx_busy(ch);
}
mp_uint_t uart_tx_txbuf(machine_uart_obj_t *self) {
int ch = (int)self->uart_id;
return ra_sci_tx_bufsize(ch);
}
// Waits at most timeout milliseconds for at least 1 char to become ready for
// reading (from buf or for direct reading).
// Returns true if something available, false if not.
bool uart_rx_wait(machine_uart_obj_t *self, uint32_t timeout) {
int ch = (int)self->uart_id;
uint32_t start = HAL_GetTick();
for (;;) {
if (ra_sci_rx_any(ch)) {
return true;
}
if (HAL_GetTick() - start >= timeout) {
return false; // timeout
}
MICROPY_EVENT_POLL_HOOK
}
}
// assumes there is a character available
int uart_rx_char(machine_uart_obj_t *self) {
int ch = (int)self->uart_id;
return ra_sci_rx_ch(ch);
}
// Waits at most timeout milliseconds for TX register to become empty.
// Returns true if can write, false if can't.
bool uart_tx_wait(machine_uart_obj_t *self, uint32_t timeout) {
uint32_t start = HAL_GetTick();
for (;;) {
if (uart_tx_avail(self)) {
return true;
}
if (HAL_GetTick() - start >= timeout) {
return false; // timeout
}
MICROPY_EVENT_POLL_HOOK
}
}
// src - a pointer to the data to send (16-bit aligned for 9-bit chars)
// num_chars - number of characters to send (9-bit chars count for 2 bytes from src)
// *errcode - returns 0 for success, MP_Exxx on error
// returns the number of characters sent (valid even if there was an error)
size_t uart_tx_data(machine_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode) {
int ch = (int)self->uart_id;
uint8_t *d8 = (uint8_t *)src_in;
uint16_t *d16 = (uint16_t *)src_in;
if (num_chars == 0) {
*errcode = 0;
return 0;
}
int i;
if (self->char_width == CHAR_WIDTH_9BIT) {
for (i = 0; i < (int)num_chars; i++) {
ra_sci_tx_ch(ch, (int)*d16++);
}
} else {
for (i = 0; i < (int)num_chars; i++) {
ra_sci_tx_ch(ch, (int)*d8++);
}
}
*errcode = 0;
return (size_t)num_chars;
}
void uart_tx_strn(machine_uart_obj_t *uart_obj, const char *str, uint len) {
int errcode;
uart_tx_data(uart_obj, str, len, &errcode);
}
STATIC mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uart_irq_config(self, false);
self->mp_irq_trigger = new_trigger;
uart_irq_config(self, true);
return 0;
}
STATIC mp_uint_t uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (info_type == MP_IRQ_INFO_FLAGS) {
return self->mp_irq_flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return self->mp_irq_trigger;
}
return 0;
}
const mp_irq_methods_t uart_irq_methods = {
.trigger = uart_irq_trigger,
.info = uart_irq_info,
};