8c656754aa
This commit adds the math.factorial function in two variants: - squared difference, which is faster than the naive version, relatively compact, and non-recursive; - a mildly optimised recursive version, faster than the above one. There are some more optimisations that could be done, but they tend to take more code, and more storage space. The recursive version seems like a sensible compromise. The new function is disabled by default, and uses the non-optimised version by default if it is enabled. The options are MICROPY_PY_MATH_FACTORIAL and MICROPY_OPT_MATH_FACTORIAL.
360 lines
13 KiB
C
360 lines
13 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013-2017 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "py/builtin.h"
|
|
#include "py/runtime.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
|
|
|
|
#include <math.h>
|
|
|
|
// M_PI is not part of the math.h standard and may not be defined
|
|
// And by defining our own we can ensure it uses the correct const format.
|
|
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
|
|
|
|
STATIC NORETURN void math_error(void) {
|
|
mp_raise_ValueError("math domain error");
|
|
}
|
|
|
|
STATIC mp_obj_t math_generic_1(mp_obj_t x_obj, mp_float_t (*f)(mp_float_t)) {
|
|
mp_float_t x = mp_obj_get_float(x_obj);
|
|
mp_float_t ans = f(x);
|
|
if ((isnan(ans) && !isnan(x)) || (isinf(ans) && !isinf(x))) {
|
|
math_error();
|
|
}
|
|
return mp_obj_new_float(ans);
|
|
}
|
|
|
|
STATIC mp_obj_t math_generic_2(mp_obj_t x_obj, mp_obj_t y_obj, mp_float_t (*f)(mp_float_t, mp_float_t)) {
|
|
mp_float_t x = mp_obj_get_float(x_obj);
|
|
mp_float_t y = mp_obj_get_float(y_obj);
|
|
mp_float_t ans = f(x, y);
|
|
if ((isnan(ans) && !isnan(x) && !isnan(y)) || (isinf(ans) && !isinf(x))) {
|
|
math_error();
|
|
}
|
|
return mp_obj_new_float(ans);
|
|
}
|
|
|
|
#define MATH_FUN_1(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { \
|
|
return math_generic_1(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_TO_INT(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_2(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
|
|
return math_generic_2(x_obj, y_obj, MICROPY_FLOAT_C_FUN(c_name)); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_2_FLT_INT(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
|
|
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_int(y_obj))); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#if MP_NEED_LOG2
|
|
#undef log2
|
|
#undef log2f
|
|
// 1.442695040888963407354163704 is 1/_M_LN2
|
|
mp_float_t MICROPY_FLOAT_C_FUN(log2)(mp_float_t x) {
|
|
return MICROPY_FLOAT_C_FUN(log)(x) * MICROPY_FLOAT_CONST(1.442695040888963407354163704);
|
|
}
|
|
#endif
|
|
|
|
// sqrt(x): returns the square root of x
|
|
MATH_FUN_1(sqrt, sqrt)
|
|
// pow(x, y): returns x to the power of y
|
|
MATH_FUN_2(pow, pow)
|
|
// exp(x)
|
|
MATH_FUN_1(exp, exp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
// expm1(x)
|
|
MATH_FUN_1(expm1, expm1)
|
|
// log2(x)
|
|
MATH_FUN_1(log2, log2)
|
|
// log10(x)
|
|
MATH_FUN_1(log10, log10)
|
|
// cosh(x)
|
|
MATH_FUN_1(cosh, cosh)
|
|
// sinh(x)
|
|
MATH_FUN_1(sinh, sinh)
|
|
// tanh(x)
|
|
MATH_FUN_1(tanh, tanh)
|
|
// acosh(x)
|
|
MATH_FUN_1(acosh, acosh)
|
|
// asinh(x)
|
|
MATH_FUN_1(asinh, asinh)
|
|
// atanh(x)
|
|
MATH_FUN_1(atanh, atanh)
|
|
#endif
|
|
// cos(x)
|
|
MATH_FUN_1(cos, cos)
|
|
// sin(x)
|
|
MATH_FUN_1(sin, sin)
|
|
// tan(x)
|
|
MATH_FUN_1(tan, tan)
|
|
// acos(x)
|
|
MATH_FUN_1(acos, acos)
|
|
// asin(x)
|
|
MATH_FUN_1(asin, asin)
|
|
// atan(x)
|
|
MATH_FUN_1(atan, atan)
|
|
// atan2(y, x)
|
|
MATH_FUN_2(atan2, atan2)
|
|
// ceil(x)
|
|
MATH_FUN_1_TO_INT(ceil, ceil)
|
|
// copysign(x, y)
|
|
STATIC mp_float_t MICROPY_FLOAT_C_FUN(copysign_func)(mp_float_t x, mp_float_t y) {
|
|
return MICROPY_FLOAT_C_FUN(copysign)(x, y);
|
|
}
|
|
MATH_FUN_2(copysign, copysign_func)
|
|
// fabs(x)
|
|
STATIC mp_float_t MICROPY_FLOAT_C_FUN(fabs_func)(mp_float_t x) {
|
|
return MICROPY_FLOAT_C_FUN(fabs)(x);
|
|
}
|
|
MATH_FUN_1(fabs, fabs_func)
|
|
// floor(x)
|
|
MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
|
|
// fmod(x, y)
|
|
MATH_FUN_2(fmod, fmod)
|
|
// isfinite(x)
|
|
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
|
|
// isinf(x)
|
|
MATH_FUN_1_TO_BOOL(isinf, isinf)
|
|
// isnan(x)
|
|
MATH_FUN_1_TO_BOOL(isnan, isnan)
|
|
// trunc(x)
|
|
MATH_FUN_1_TO_INT(trunc, trunc)
|
|
// ldexp(x, exp)
|
|
MATH_FUN_2_FLT_INT(ldexp, ldexp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
// erf(x): return the error function of x
|
|
MATH_FUN_1(erf, erf)
|
|
// erfc(x): return the complementary error function of x
|
|
MATH_FUN_1(erfc, erfc)
|
|
// gamma(x): return the gamma function of x
|
|
MATH_FUN_1(gamma, tgamma)
|
|
// lgamma(x): return the natural logarithm of the gamma function of x
|
|
MATH_FUN_1(lgamma, lgamma)
|
|
#endif
|
|
//TODO: fsum
|
|
|
|
// Function that takes a variable number of arguments
|
|
|
|
// log(x[, base])
|
|
STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
|
|
mp_float_t x = mp_obj_get_float(args[0]);
|
|
if (x <= (mp_float_t)0.0) {
|
|
math_error();
|
|
}
|
|
mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
|
|
if (n_args == 1) {
|
|
return mp_obj_new_float(l);
|
|
} else {
|
|
mp_float_t base = mp_obj_get_float(args[1]);
|
|
if (base <= (mp_float_t)0.0) {
|
|
math_error();
|
|
} else if (base == (mp_float_t)1.0) {
|
|
mp_raise_msg(&mp_type_ZeroDivisionError, "divide by zero");
|
|
}
|
|
return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
|
|
|
|
// Functions that return a tuple
|
|
|
|
// frexp(x): converts a floating-point number to fractional and integral components
|
|
STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
|
|
int int_exponent = 0;
|
|
mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(significand);
|
|
tuple[1] = mp_obj_new_int(int_exponent);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
|
|
|
|
// modf(x)
|
|
STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
|
|
mp_float_t int_part = 0.0;
|
|
mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(fractional_part);
|
|
tuple[1] = mp_obj_new_float(int_part);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
|
|
|
|
// Angular conversions
|
|
|
|
// radians(x)
|
|
STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
|
|
|
|
// degrees(x)
|
|
STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
|
|
|
|
#if MICROPY_PY_MATH_FACTORIAL
|
|
|
|
#if MICROPY_OPT_MATH_FACTORIAL
|
|
|
|
// factorial(x): slightly efficient recursive implementation
|
|
STATIC mp_obj_t mp_math_factorial_inner(mp_uint_t start, mp_uint_t end) {
|
|
if (start == end) {
|
|
return mp_obj_new_int(start);
|
|
} else if (end - start == 1) {
|
|
return mp_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_NEW_SMALL_INT(start), MP_OBJ_NEW_SMALL_INT(end));
|
|
} else if (end - start == 2) {
|
|
mp_obj_t left = MP_OBJ_NEW_SMALL_INT(start);
|
|
mp_obj_t middle = MP_OBJ_NEW_SMALL_INT(start + 1);
|
|
mp_obj_t right = MP_OBJ_NEW_SMALL_INT(end);
|
|
mp_obj_t tmp = mp_binary_op(MP_BINARY_OP_MULTIPLY, left, middle);
|
|
return mp_binary_op(MP_BINARY_OP_MULTIPLY, tmp, right);
|
|
} else {
|
|
mp_uint_t middle = start + ((end - start) >> 1);
|
|
mp_obj_t left = mp_math_factorial_inner(start, middle);
|
|
mp_obj_t right = mp_math_factorial_inner(middle + 1, end);
|
|
return mp_binary_op(MP_BINARY_OP_MULTIPLY, left, right);
|
|
}
|
|
}
|
|
STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
|
|
mp_int_t max = mp_obj_get_int(x_obj);
|
|
if (max < 0) {
|
|
mp_raise_msg(&mp_type_ValueError, "negative factorial");
|
|
} else if (max == 0) {
|
|
return MP_OBJ_NEW_SMALL_INT(1);
|
|
}
|
|
return mp_math_factorial_inner(1, max);
|
|
}
|
|
|
|
#else
|
|
|
|
// factorial(x): squared difference implementation
|
|
// based on http://www.luschny.de/math/factorial/index.html
|
|
STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
|
|
mp_int_t max = mp_obj_get_int(x_obj);
|
|
if (max < 0) {
|
|
mp_raise_msg(&mp_type_ValueError, "negative factorial");
|
|
} else if (max <= 1) {
|
|
return MP_OBJ_NEW_SMALL_INT(1);
|
|
}
|
|
mp_int_t h = max >> 1;
|
|
mp_int_t q = h * h;
|
|
mp_int_t r = q << 1;
|
|
if (max & 1) {
|
|
r *= max;
|
|
}
|
|
mp_obj_t prod = MP_OBJ_NEW_SMALL_INT(r);
|
|
for (mp_int_t num = 1; num < max - 2; num += 2) {
|
|
q -= num;
|
|
prod = mp_binary_op(MP_BINARY_OP_MULTIPLY, prod, MP_OBJ_NEW_SMALL_INT(q));
|
|
}
|
|
return prod;
|
|
}
|
|
|
|
#endif
|
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_factorial_obj, mp_math_factorial);
|
|
|
|
#endif
|
|
|
|
STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
|
|
{ MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
|
|
{ MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
|
|
{ MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
|
|
#if MICROPY_PY_MATH_FACTORIAL
|
|
{ MP_ROM_QSTR(MP_QSTR_factorial), MP_ROM_PTR(&mp_math_factorial_obj) },
|
|
#endif
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
|
|
#endif
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
|
|
|
|
const mp_obj_module_t mp_module_math = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&mp_module_math_globals,
|
|
};
|
|
|
|
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
|