circuitpython/extmod/modlwip.c
Damien George f5769698e5 extmod/modlwip: Clean up inclusion of modlwip in build process.
The following changes are made:

- Guard entire file with MICROPY_PY_LWIP, so it can be included in the
  build while still being disabled (for consistency with other extmod
  modules).

- Add modlwip.c to list of all extmod source in py/py.mk and
  extmod/extmod.cmake so all ports can easily use it.

- Move generic modlwip GIT_SUBMODULES build configuration code from
  ports/rp2/CMakeLists.txt to extmod/extmod.cmake, so it can be reused by
  other ports.

- Remove now unnecessary inclusion of modlwip.c in EXTMOD_SRC_C in esp8266
  port, and in SRC_QSTR in mimxrt port.

Signed-off-by: Damien George <damien@micropython.org>
2022-06-20 23:37:38 +10:00

1787 lines
61 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2019 Damien P. George
* Copyright (c) 2015 Galen Hazelwood
* Copyright (c) 2015-2017 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include <stdio.h>
#include "py/objlist.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#if MICROPY_PY_LWIP
#include "shared/netutils/netutils.h"
#include "lwip/init.h"
#include "lwip/tcp.h"
#include "lwip/udp.h"
#include "lwip/raw.h"
#include "lwip/dns.h"
#include "lwip/igmp.h"
#if LWIP_VERSION_MAJOR < 2
#include "lwip/timers.h"
#include "lwip/tcp_impl.h"
#else
#include "lwip/timeouts.h"
#include "lwip/priv/tcp_priv.h"
#endif
#if 0 // print debugging info
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
// Timeout between closing a TCP socket and doing a tcp_abort on that
// socket, if the connection isn't closed cleanly in that time.
#define MICROPY_PY_LWIP_TCP_CLOSE_TIMEOUT_MS (10000)
// All socket options should be globally distinct,
// because we ignore option levels for efficiency.
#define IP_ADD_MEMBERSHIP 0x400
// For compatibilily with older lwIP versions.
#ifndef ip_set_option
#define ip_set_option(pcb, opt) ((pcb)->so_options |= (opt))
#endif
#ifndef ip_reset_option
#define ip_reset_option(pcb, opt) ((pcb)->so_options &= ~(opt))
#endif
// A port can define these hooks to provide concurrency protection
#ifndef MICROPY_PY_LWIP_ENTER
#define MICROPY_PY_LWIP_ENTER
#define MICROPY_PY_LWIP_REENTER
#define MICROPY_PY_LWIP_EXIT
#endif
#ifdef MICROPY_PY_LWIP_SLIP
#include "netif/slipif.h"
#include "lwip/sio.h"
#endif
#ifdef MICROPY_PY_LWIP_SLIP
/******************************************************************************/
// Slip object for modlwip. Requires a serial driver for the port that supports
// the lwip serial callback functions.
typedef struct _lwip_slip_obj_t {
mp_obj_base_t base;
struct netif lwip_netif;
} lwip_slip_obj_t;
// Slip object is unique for now. Possibly can fix this later. FIXME
STATIC lwip_slip_obj_t lwip_slip_obj;
// Declare these early.
void mod_lwip_register_poll(void (*poll)(void *arg), void *poll_arg);
void mod_lwip_deregister_poll(void (*poll)(void *arg), void *poll_arg);
STATIC void slip_lwip_poll(void *netif) {
slipif_poll((struct netif *)netif);
}
STATIC const mp_obj_type_t lwip_slip_type;
// lwIP SLIP callback functions
sio_fd_t sio_open(u8_t dvnum) {
// We support singleton SLIP interface, so just return any truish value.
return (sio_fd_t)1;
}
void sio_send(u8_t c, sio_fd_t fd) {
mp_obj_type_t *type = mp_obj_get_type(MP_STATE_VM(lwip_slip_stream));
int error;
type->stream_p->write(MP_STATE_VM(lwip_slip_stream), &c, 1, &error);
}
u32_t sio_tryread(sio_fd_t fd, u8_t *data, u32_t len) {
mp_obj_type_t *type = mp_obj_get_type(MP_STATE_VM(lwip_slip_stream));
int error;
mp_uint_t out_sz = type->stream_p->read(MP_STATE_VM(lwip_slip_stream), data, len, &error);
if (out_sz == MP_STREAM_ERROR) {
if (mp_is_nonblocking_error(error)) {
return 0;
}
// Can't do much else, can we?
return 0;
}
return out_sz;
}
// constructor lwip.slip(device=integer, iplocal=string, ipremote=string)
STATIC mp_obj_t lwip_slip_make_new(mp_obj_t type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 3, 3, false);
lwip_slip_obj.base.type = &lwip_slip_type;
MP_STATE_VM(lwip_slip_stream) = args[0];
ip_addr_t iplocal, ipremote;
if (!ipaddr_aton(mp_obj_str_get_str(args[1]), &iplocal)) {
mp_raise_ValueError(MP_ERROR_TEXT("not a valid local IP"));
}
if (!ipaddr_aton(mp_obj_str_get_str(args[2]), &ipremote)) {
mp_raise_ValueError(MP_ERROR_TEXT("not a valid remote IP"));
}
struct netif *n = &lwip_slip_obj.lwip_netif;
if (netif_add(n, &iplocal, IP_ADDR_BROADCAST, &ipremote, NULL, slipif_init, ip_input) == NULL) {
mp_raise_ValueError(MP_ERROR_TEXT("out of memory"));
}
netif_set_up(n);
netif_set_default(n);
mod_lwip_register_poll(slip_lwip_poll, n);
return (mp_obj_t)&lwip_slip_obj;
}
STATIC mp_obj_t lwip_slip_status(mp_obj_t self_in) {
// Null function for now.
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(lwip_slip_status_obj, lwip_slip_status);
STATIC const mp_rom_map_elem_t lwip_slip_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_status), MP_ROM_PTR(&lwip_slip_status_obj) },
};
STATIC MP_DEFINE_CONST_DICT(lwip_slip_locals_dict, lwip_slip_locals_dict_table);
STATIC const mp_obj_type_t lwip_slip_type = {
{ &mp_type_type },
.name = MP_QSTR_slip,
.make_new = lwip_slip_make_new,
.locals_dict = (mp_obj_dict_t *)&lwip_slip_locals_dict,
};
#endif // MICROPY_PY_LWIP_SLIP
/******************************************************************************/
// Table to convert lwIP err_t codes to socket errno codes, from the lwIP
// socket API.
// lwIP 2 changed LWIP_VERSION and it can no longer be used in macros,
// so we define our own equivalent version that can.
#define LWIP_VERSION_MACRO (LWIP_VERSION_MAJOR << 24 | LWIP_VERSION_MINOR << 16 \
| LWIP_VERSION_REVISION << 8 | LWIP_VERSION_RC)
// Extension to lwIP error codes
#define _ERR_BADF -16
// TODO: We just know that change happened somewhere between 1.4.0 and 1.4.1,
// investigate in more detail.
#if LWIP_VERSION_MACRO < 0x01040100
static const int error_lookup_table[] = {
0, /* ERR_OK 0 No error, everything OK. */
MP_ENOMEM, /* ERR_MEM -1 Out of memory error. */
MP_ENOBUFS, /* ERR_BUF -2 Buffer error. */
MP_EWOULDBLOCK, /* ERR_TIMEOUT -3 Timeout */
MP_EHOSTUNREACH, /* ERR_RTE -4 Routing problem. */
MP_EINPROGRESS, /* ERR_INPROGRESS -5 Operation in progress */
MP_EINVAL, /* ERR_VAL -6 Illegal value. */
MP_EWOULDBLOCK, /* ERR_WOULDBLOCK -7 Operation would block. */
MP_ECONNABORTED, /* ERR_ABRT -8 Connection aborted. */
MP_ECONNRESET, /* ERR_RST -9 Connection reset. */
MP_ENOTCONN, /* ERR_CLSD -10 Connection closed. */
MP_ENOTCONN, /* ERR_CONN -11 Not connected. */
MP_EIO, /* ERR_ARG -12 Illegal argument. */
MP_EADDRINUSE, /* ERR_USE -13 Address in use. */
-1, /* ERR_IF -14 Low-level netif error */
MP_EALREADY, /* ERR_ISCONN -15 Already connected. */
MP_EBADF, /* _ERR_BADF -16 Closed socket (null pcb) */
};
#elif LWIP_VERSION_MACRO < 0x02000000
static const int error_lookup_table[] = {
0, /* ERR_OK 0 No error, everything OK. */
MP_ENOMEM, /* ERR_MEM -1 Out of memory error. */
MP_ENOBUFS, /* ERR_BUF -2 Buffer error. */
MP_EWOULDBLOCK, /* ERR_TIMEOUT -3 Timeout */
MP_EHOSTUNREACH, /* ERR_RTE -4 Routing problem. */
MP_EINPROGRESS, /* ERR_INPROGRESS -5 Operation in progress */
MP_EINVAL, /* ERR_VAL -6 Illegal value. */
MP_EWOULDBLOCK, /* ERR_WOULDBLOCK -7 Operation would block. */
MP_EADDRINUSE, /* ERR_USE -8 Address in use. */
MP_EALREADY, /* ERR_ISCONN -9 Already connected. */
MP_ECONNABORTED, /* ERR_ABRT -10 Connection aborted. */
MP_ECONNRESET, /* ERR_RST -11 Connection reset. */
MP_ENOTCONN, /* ERR_CLSD -12 Connection closed. */
MP_ENOTCONN, /* ERR_CONN -13 Not connected. */
MP_EIO, /* ERR_ARG -14 Illegal argument. */
-1, /* ERR_IF -15 Low-level netif error */
MP_EBADF, /* _ERR_BADF -16 Closed socket (null pcb) */
};
#else
// Matches lwIP 2.0.3
#undef _ERR_BADF
#define _ERR_BADF -17
static const int error_lookup_table[] = {
0, /* ERR_OK 0 No error, everything OK */
MP_ENOMEM, /* ERR_MEM -1 Out of memory error */
MP_ENOBUFS, /* ERR_BUF -2 Buffer error */
MP_EWOULDBLOCK, /* ERR_TIMEOUT -3 Timeout */
MP_EHOSTUNREACH, /* ERR_RTE -4 Routing problem */
MP_EINPROGRESS, /* ERR_INPROGRESS -5 Operation in progress */
MP_EINVAL, /* ERR_VAL -6 Illegal value */
MP_EWOULDBLOCK, /* ERR_WOULDBLOCK -7 Operation would block */
MP_EADDRINUSE, /* ERR_USE -8 Address in use */
MP_EALREADY, /* ERR_ALREADY -9 Already connecting */
MP_EALREADY, /* ERR_ISCONN -10 Conn already established */
MP_ENOTCONN, /* ERR_CONN -11 Not connected */
-1, /* ERR_IF -12 Low-level netif error */
MP_ECONNABORTED, /* ERR_ABRT -13 Connection aborted */
MP_ECONNRESET, /* ERR_RST -14 Connection reset */
MP_ENOTCONN, /* ERR_CLSD -15 Connection closed */
MP_EIO, /* ERR_ARG -16 Illegal argument. */
MP_EBADF, /* _ERR_BADF -17 Closed socket (null pcb) */
};
#endif
/*******************************************************************************/
// The socket object provided by lwip.socket.
#define MOD_NETWORK_AF_INET (2)
#define MOD_NETWORK_AF_INET6 (10)
#define MOD_NETWORK_SOCK_STREAM (1)
#define MOD_NETWORK_SOCK_DGRAM (2)
#define MOD_NETWORK_SOCK_RAW (3)
typedef struct _lwip_socket_obj_t {
mp_obj_base_t base;
volatile union {
struct tcp_pcb *tcp;
struct udp_pcb *udp;
struct raw_pcb *raw;
} pcb;
volatile union {
struct pbuf *pbuf;
struct {
uint8_t alloc;
uint8_t iget;
uint8_t iput;
union {
struct tcp_pcb *item; // if alloc == 0
struct tcp_pcb **array; // if alloc != 0
} tcp;
} connection;
} incoming;
mp_obj_t callback;
byte peer[4];
mp_uint_t peer_port;
mp_uint_t timeout;
uint16_t recv_offset;
uint8_t domain;
uint8_t type;
#define STATE_NEW 0
#define STATE_LISTENING 1
#define STATE_CONNECTING 2
#define STATE_CONNECTED 3
#define STATE_PEER_CLOSED 4
#define STATE_ACTIVE_UDP 5
// Negative value is lwIP error
int8_t state;
} lwip_socket_obj_t;
static inline void poll_sockets(void) {
#ifdef MICROPY_EVENT_POLL_HOOK
MICROPY_EVENT_POLL_HOOK;
#else
mp_hal_delay_ms(1);
#endif
}
STATIC struct tcp_pcb *volatile *lwip_socket_incoming_array(lwip_socket_obj_t *socket) {
if (socket->incoming.connection.alloc == 0) {
return &socket->incoming.connection.tcp.item;
} else {
return &socket->incoming.connection.tcp.array[0];
}
}
STATIC void lwip_socket_free_incoming(lwip_socket_obj_t *socket) {
bool socket_is_listener =
socket->type == MOD_NETWORK_SOCK_STREAM
&& socket->pcb.tcp->state == LISTEN;
if (!socket_is_listener) {
if (socket->incoming.pbuf != NULL) {
pbuf_free(socket->incoming.pbuf);
socket->incoming.pbuf = NULL;
}
} else {
uint8_t alloc = socket->incoming.connection.alloc;
struct tcp_pcb *volatile *tcp_array = lwip_socket_incoming_array(socket);
for (uint8_t i = 0; i < alloc; ++i) {
// Deregister callback and abort
if (tcp_array[i] != NULL) {
tcp_poll(tcp_array[i], NULL, 0);
tcp_abort(tcp_array[i]);
tcp_array[i] = NULL;
}
}
}
}
/*******************************************************************************/
// Callback functions for the lwIP raw API.
static inline void exec_user_callback(lwip_socket_obj_t *socket) {
if (socket->callback != MP_OBJ_NULL) {
// Schedule the user callback to execute outside the lwIP context
mp_sched_schedule(socket->callback, MP_OBJ_FROM_PTR(socket));
}
}
#if MICROPY_PY_LWIP_SOCK_RAW
// Callback for incoming raw packets.
#if LWIP_VERSION_MAJOR < 2
STATIC u8_t _lwip_raw_incoming(void *arg, struct raw_pcb *pcb, struct pbuf *p, ip_addr_t *addr)
#else
STATIC u8_t _lwip_raw_incoming(void *arg, struct raw_pcb *pcb, struct pbuf *p, const ip_addr_t *addr)
#endif
{
lwip_socket_obj_t *socket = (lwip_socket_obj_t *)arg;
if (socket->incoming.pbuf != NULL) {
pbuf_free(p);
} else {
socket->incoming.pbuf = p;
memcpy(&socket->peer, addr, sizeof(socket->peer));
}
return 1; // we ate the packet
}
#endif
// Callback for incoming UDP packets. We simply stash the packet and the source address,
// in case we need it for recvfrom.
#if LWIP_VERSION_MAJOR < 2
STATIC void _lwip_udp_incoming(void *arg, struct udp_pcb *upcb, struct pbuf *p, ip_addr_t *addr, u16_t port)
#else
STATIC void _lwip_udp_incoming(void *arg, struct udp_pcb *upcb, struct pbuf *p, const ip_addr_t *addr, u16_t port)
#endif
{
lwip_socket_obj_t *socket = (lwip_socket_obj_t *)arg;
if (socket->incoming.pbuf != NULL) {
// That's why they call it "unreliable". No room in the inn, drop the packet.
pbuf_free(p);
} else {
socket->incoming.pbuf = p;
socket->peer_port = (mp_uint_t)port;
memcpy(&socket->peer, addr, sizeof(socket->peer));
}
}
// Callback for general tcp errors.
STATIC void _lwip_tcp_error(void *arg, err_t err) {
lwip_socket_obj_t *socket = (lwip_socket_obj_t *)arg;
// Free any incoming buffers or connections that are stored
lwip_socket_free_incoming(socket);
// Pass the error code back via the connection variable.
socket->state = err;
// If we got here, the lwIP stack either has deallocated or will deallocate the pcb.
socket->pcb.tcp = NULL;
}
// Callback for tcp connection requests. Error code err is unused. (See tcp.h)
STATIC err_t _lwip_tcp_connected(void *arg, struct tcp_pcb *tpcb, err_t err) {
lwip_socket_obj_t *socket = (lwip_socket_obj_t *)arg;
socket->state = STATE_CONNECTED;
return ERR_OK;
}
// Handle errors (eg connection aborted) on TCP PCBs that have been put on the
// accept queue but are not yet actually accepted.
STATIC void _lwip_tcp_err_unaccepted(void *arg, err_t err) {
struct tcp_pcb *pcb = (struct tcp_pcb *)arg;
// The ->connected entry is repurposed to store the parent socket; this is safe
// because it's only ever used by lwIP if tcp_connect is called on the TCP PCB.
lwip_socket_obj_t *socket = (lwip_socket_obj_t *)pcb->connected;
// Array is not volatile because thiss callback is executed within the lwIP context
uint8_t alloc = socket->incoming.connection.alloc;
struct tcp_pcb **tcp_array = (struct tcp_pcb **)lwip_socket_incoming_array(socket);
// Search for PCB on the accept queue of the parent socket
struct tcp_pcb **shift_down = NULL;
uint8_t i = socket->incoming.connection.iget;
do {
if (shift_down == NULL) {
if (tcp_array[i] == pcb) {
shift_down = &tcp_array[i];
}
} else {
*shift_down = tcp_array[i];
shift_down = &tcp_array[i];
}
if (++i >= alloc) {
i = 0;
}
} while (i != socket->incoming.connection.iput);
// PCB found in queue, remove it
if (shift_down != NULL) {
*shift_down = NULL;
socket->incoming.connection.iput = shift_down - tcp_array;
}
}
// By default, a child socket of listen socket is created with recv
// handler which discards incoming pbuf's. We don't want to do that,
// so set this handler which requests lwIP to keep pbuf's and deliver
// them later. We cannot cache pbufs in child socket on Python side,
// until it is created in accept().
STATIC err_t _lwip_tcp_recv_unaccepted(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err) {
return ERR_BUF;
}
// Callback for incoming tcp connections.
STATIC err_t _lwip_tcp_accept(void *arg, struct tcp_pcb *newpcb, err_t err) {
// err can be ERR_MEM to notify us that there was no memory for an incoming connection
if (err != ERR_OK) {
return ERR_OK;
}
lwip_socket_obj_t *socket = (lwip_socket_obj_t *)arg;
tcp_recv(newpcb, _lwip_tcp_recv_unaccepted);
// Search for an empty slot to store the new connection
struct tcp_pcb *volatile *slot = &lwip_socket_incoming_array(socket)[socket->incoming.connection.iput];
if (*slot == NULL) {
// Have an empty slot to store waiting connection
*slot = newpcb;
if (++socket->incoming.connection.iput >= socket->incoming.connection.alloc) {
socket->incoming.connection.iput = 0;
}
// Schedule user accept callback
exec_user_callback(socket);
// Set the error callback to handle the case of a dropped connection before we
// have a chance to take it off the accept queue.
// The ->connected entry is repurposed to store the parent socket; this is safe
// because it's only ever used by lwIP if tcp_connect is called on the TCP PCB.
newpcb->connected = (void *)socket;
tcp_arg(newpcb, newpcb);
tcp_err(newpcb, _lwip_tcp_err_unaccepted);
return ERR_OK;
}
DEBUG_printf("_lwip_tcp_accept: No room to queue pcb waiting for accept\n");
return ERR_BUF;
}
// Callback for inbound tcp packets.
STATIC err_t _lwip_tcp_recv(void *arg, struct tcp_pcb *tcpb, struct pbuf *p, err_t err) {
lwip_socket_obj_t *socket = (lwip_socket_obj_t *)arg;
if (p == NULL) {
// Other side has closed connection.
DEBUG_printf("_lwip_tcp_recv[%p]: other side closed connection\n", socket);
socket->state = STATE_PEER_CLOSED;
exec_user_callback(socket);
return ERR_OK;
}
if (socket->incoming.pbuf == NULL) {
socket->incoming.pbuf = p;
} else {
#ifdef SOCKET_SINGLE_PBUF
return ERR_BUF;
#else
pbuf_cat(socket->incoming.pbuf, p);
#endif
}
exec_user_callback(socket);
return ERR_OK;
}
/*******************************************************************************/
// Functions for socket send/receive operations. Socket send/recv and friends call
// these to do the work.
// Helper function for send/sendto to handle raw/UDP packets.
STATIC mp_uint_t lwip_raw_udp_send(lwip_socket_obj_t *socket, const byte *buf, mp_uint_t len, byte *ip, mp_uint_t port, int *_errno) {
if (len > 0xffff) {
// Any packet that big is probably going to fail the pbuf_alloc anyway, but may as well try
len = 0xffff;
}
MICROPY_PY_LWIP_ENTER
// FIXME: maybe PBUF_ROM?
struct pbuf *p = pbuf_alloc(PBUF_TRANSPORT, len, PBUF_RAM);
if (p == NULL) {
MICROPY_PY_LWIP_EXIT
*_errno = MP_ENOMEM;
return -1;
}
memcpy(p->payload, buf, len);
err_t err;
if (ip == NULL) {
#if MICROPY_PY_LWIP_SOCK_RAW
if (socket->type == MOD_NETWORK_SOCK_RAW) {
err = raw_send(socket->pcb.raw, p);
} else
#endif
{
err = udp_send(socket->pcb.udp, p);
}
} else {
ip_addr_t dest;
IP4_ADDR(&dest, ip[0], ip[1], ip[2], ip[3]);
#if MICROPY_PY_LWIP_SOCK_RAW
if (socket->type == MOD_NETWORK_SOCK_RAW) {
err = raw_sendto(socket->pcb.raw, p, &dest);
} else
#endif
{
err = udp_sendto(socket->pcb.udp, p, &dest, port);
}
}
pbuf_free(p);
MICROPY_PY_LWIP_EXIT
// udp_sendto can return 1 on occasion for ESP8266 port. It's not known why
// but it seems that the send actually goes through without error in this case.
// So we treat such cases as a success until further investigation.
if (err != ERR_OK && err != 1) {
*_errno = error_lookup_table[-err];
return -1;
}
return len;
}
// Helper function for recv/recvfrom to handle raw/UDP packets
STATIC mp_uint_t lwip_raw_udp_receive(lwip_socket_obj_t *socket, byte *buf, mp_uint_t len, byte *ip, mp_uint_t *port, int *_errno) {
if (socket->incoming.pbuf == NULL) {
if (socket->timeout == 0) {
// Non-blocking socket.
*_errno = MP_EAGAIN;
return -1;
}
// Wait for data to arrive on UDP socket.
mp_uint_t start = mp_hal_ticks_ms();
while (socket->incoming.pbuf == NULL) {
if (socket->timeout != -1 && mp_hal_ticks_ms() - start > socket->timeout) {
*_errno = MP_ETIMEDOUT;
return -1;
}
poll_sockets();
}
}
if (ip != NULL) {
memcpy(ip, &socket->peer, sizeof(socket->peer));
*port = socket->peer_port;
}
struct pbuf *p = socket->incoming.pbuf;
MICROPY_PY_LWIP_ENTER
u16_t result = pbuf_copy_partial(p, buf, ((p->tot_len > len) ? len : p->tot_len), 0);
pbuf_free(p);
socket->incoming.pbuf = NULL;
MICROPY_PY_LWIP_EXIT
return (mp_uint_t)result;
}
// For use in stream virtual methods
#define STREAM_ERROR_CHECK(socket) \
if (socket->state < 0) { \
*_errno = error_lookup_table[-socket->state]; \
return MP_STREAM_ERROR; \
} \
assert(socket->pcb.tcp);
// Version of above for use when lock is held
#define STREAM_ERROR_CHECK_WITH_LOCK(socket) \
if (socket->state < 0) { \
*_errno = error_lookup_table[-socket->state]; \
MICROPY_PY_LWIP_EXIT \
return MP_STREAM_ERROR; \
} \
assert(socket->pcb.tcp);
// Helper function for send/sendto to handle TCP packets
STATIC mp_uint_t lwip_tcp_send(lwip_socket_obj_t *socket, const byte *buf, mp_uint_t len, int *_errno) {
// Check for any pending errors
STREAM_ERROR_CHECK(socket);
MICROPY_PY_LWIP_ENTER
u16_t available = tcp_sndbuf(socket->pcb.tcp);
if (available == 0) {
// Non-blocking socket
if (socket->timeout == 0) {
MICROPY_PY_LWIP_EXIT
*_errno = MP_EAGAIN;
return MP_STREAM_ERROR;
}
mp_uint_t start = mp_hal_ticks_ms();
// Assume that STATE_PEER_CLOSED may mean half-closed connection, where peer closed it
// sending direction, but not receiving. Consequently, check for both STATE_CONNECTED
// and STATE_PEER_CLOSED as normal conditions and still waiting for buffers to be sent.
// If peer fully closed socket, we would have socket->state set to ERR_RST (connection
// reset) by error callback.
// Avoid sending too small packets, so wait until at least 16 bytes available
while (socket->state >= STATE_CONNECTED && (available = tcp_sndbuf(socket->pcb.tcp)) < 16) {
MICROPY_PY_LWIP_EXIT
if (socket->timeout != -1 && mp_hal_ticks_ms() - start > socket->timeout) {
*_errno = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
}
poll_sockets();
MICROPY_PY_LWIP_REENTER
}
// While we waited, something could happen
STREAM_ERROR_CHECK_WITH_LOCK(socket);
}
u16_t write_len = MIN(available, len);
// If tcp_write returns ERR_MEM then there's currently not enough memory to
// queue the write, so wait and keep trying until it succeeds (with 10s limit).
// Note: if the socket is non-blocking then this code will actually block until
// there's enough memory to do the write, but by this stage we have already
// committed to being able to write the data.
err_t err;
for (int i = 0; i < 200; ++i) {
err = tcp_write(socket->pcb.tcp, buf, write_len, TCP_WRITE_FLAG_COPY);
if (err != ERR_MEM) {
break;
}
err = tcp_output(socket->pcb.tcp);
if (err != ERR_OK) {
break;
}
MICROPY_PY_LWIP_EXIT
mp_hal_delay_ms(50);
MICROPY_PY_LWIP_REENTER
}
// If the output buffer is getting full then send the data to the lower layers
if (err == ERR_OK && tcp_sndbuf(socket->pcb.tcp) < TCP_SND_BUF / 4) {
err = tcp_output(socket->pcb.tcp);
}
MICROPY_PY_LWIP_EXIT
if (err != ERR_OK) {
*_errno = error_lookup_table[-err];
return MP_STREAM_ERROR;
}
return write_len;
}
// Helper function for recv/recvfrom to handle TCP packets
STATIC mp_uint_t lwip_tcp_receive(lwip_socket_obj_t *socket, byte *buf, mp_uint_t len, int *_errno) {
// Check for any pending errors
STREAM_ERROR_CHECK(socket);
if (socket->incoming.pbuf == NULL) {
// Non-blocking socket
if (socket->timeout == 0) {
if (socket->state == STATE_PEER_CLOSED) {
return 0;
}
*_errno = MP_EAGAIN;
return -1;
}
mp_uint_t start = mp_hal_ticks_ms();
while (socket->state == STATE_CONNECTED && socket->incoming.pbuf == NULL) {
if (socket->timeout != -1 && mp_hal_ticks_ms() - start > socket->timeout) {
*_errno = MP_ETIMEDOUT;
return -1;
}
poll_sockets();
}
if (socket->state == STATE_PEER_CLOSED) {
if (socket->incoming.pbuf == NULL) {
// socket closed and no data left in buffer
return 0;
}
} else if (socket->state != STATE_CONNECTED) {
if (socket->state >= STATE_NEW) {
*_errno = MP_ENOTCONN;
} else {
*_errno = error_lookup_table[-socket->state];
}
return -1;
}
}
MICROPY_PY_LWIP_ENTER
assert(socket->pcb.tcp != NULL);
struct pbuf *p = socket->incoming.pbuf;
mp_uint_t remaining = p->len - socket->recv_offset;
if (len > remaining) {
len = remaining;
}
memcpy(buf, (byte *)p->payload + socket->recv_offset, len);
remaining -= len;
if (remaining == 0) {
socket->incoming.pbuf = p->next;
// If we don't ref here, free() will free the entire chain,
// if we ref, it does what we need: frees 1st buf, and decrements
// next buf's refcount back to 1.
pbuf_ref(p->next);
pbuf_free(p);
socket->recv_offset = 0;
} else {
socket->recv_offset += len;
}
tcp_recved(socket->pcb.tcp, len);
MICROPY_PY_LWIP_EXIT
return len;
}
/*******************************************************************************/
// The socket functions provided by lwip.socket.
STATIC const mp_obj_type_t lwip_socket_type;
STATIC void lwip_socket_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
lwip_socket_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "<socket state=%d timeout=%d incoming=%p off=%d>", self->state, self->timeout,
self->incoming.pbuf, self->recv_offset);
}
// FIXME: Only supports two arguments at present
STATIC mp_obj_t lwip_socket_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, 4, false);
lwip_socket_obj_t *socket = m_new_obj_with_finaliser(lwip_socket_obj_t);
socket->base.type = &lwip_socket_type;
socket->timeout = -1;
socket->recv_offset = 0;
socket->domain = MOD_NETWORK_AF_INET;
socket->type = MOD_NETWORK_SOCK_STREAM;
socket->callback = MP_OBJ_NULL;
socket->state = STATE_NEW;
if (n_args >= 1) {
socket->domain = mp_obj_get_int(args[0]);
if (n_args >= 2) {
socket->type = mp_obj_get_int(args[1]);
}
}
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM:
socket->pcb.tcp = tcp_new();
socket->incoming.connection.alloc = 0;
socket->incoming.connection.tcp.item = NULL;
break;
case MOD_NETWORK_SOCK_DGRAM:
socket->pcb.udp = udp_new();
socket->incoming.pbuf = NULL;
break;
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW: {
mp_int_t proto = n_args <= 2 ? 0 : mp_obj_get_int(args[2]);
socket->pcb.raw = raw_new(proto);
break;
}
#endif
default:
mp_raise_OSError(MP_EINVAL);
}
if (socket->pcb.tcp == NULL) {
mp_raise_OSError(MP_ENOMEM);
}
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
// Register the socket object as our callback argument.
tcp_arg(socket->pcb.tcp, (void *)socket);
// Register our error callback.
tcp_err(socket->pcb.tcp, _lwip_tcp_error);
break;
}
case MOD_NETWORK_SOCK_DGRAM: {
socket->state = STATE_ACTIVE_UDP;
// Register our receive callback now. Since UDP sockets don't require binding or connection
// before use, there's no other good time to do it.
udp_recv(socket->pcb.udp, _lwip_udp_incoming, (void *)socket);
break;
}
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW: {
// Register our receive callback now. Since raw sockets don't require binding or connection
// before use, there's no other good time to do it.
raw_recv(socket->pcb.raw, _lwip_raw_incoming, (void *)socket);
break;
}
#endif
}
return MP_OBJ_FROM_PTR(socket);
}
STATIC mp_obj_t lwip_socket_bind(mp_obj_t self_in, mp_obj_t addr_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
uint8_t ip[NETUTILS_IPV4ADDR_BUFSIZE];
mp_uint_t port = netutils_parse_inet_addr(addr_in, ip, NETUTILS_BIG);
ip_addr_t bind_addr;
IP4_ADDR(&bind_addr, ip[0], ip[1], ip[2], ip[3]);
err_t err = ERR_ARG;
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
err = tcp_bind(socket->pcb.tcp, &bind_addr, port);
break;
}
case MOD_NETWORK_SOCK_DGRAM: {
err = udp_bind(socket->pcb.udp, &bind_addr, port);
break;
}
}
if (err != ERR_OK) {
mp_raise_OSError(error_lookup_table[-err]);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(lwip_socket_bind_obj, lwip_socket_bind);
STATIC mp_obj_t lwip_socket_listen(size_t n_args, const mp_obj_t *args) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(args[0]);
mp_int_t backlog = MICROPY_PY_USOCKET_LISTEN_BACKLOG_DEFAULT;
if (n_args > 1) {
backlog = mp_obj_get_int(args[1]);
backlog = (backlog < 0) ? 0 : backlog;
}
if (socket->pcb.tcp == NULL) {
mp_raise_OSError(MP_EBADF);
}
if (socket->type != MOD_NETWORK_SOCK_STREAM) {
mp_raise_OSError(MP_EOPNOTSUPP);
}
struct tcp_pcb *new_pcb = tcp_listen_with_backlog(socket->pcb.tcp, (u8_t)backlog);
if (new_pcb == NULL) {
mp_raise_OSError(MP_ENOMEM);
}
socket->pcb.tcp = new_pcb;
// Allocate memory for the backlog of connections
if (backlog <= 1) {
socket->incoming.connection.alloc = 0;
socket->incoming.connection.tcp.item = NULL;
} else {
socket->incoming.connection.alloc = backlog;
socket->incoming.connection.tcp.array = m_new0(struct tcp_pcb *, backlog);
}
socket->incoming.connection.iget = 0;
socket->incoming.connection.iput = 0;
tcp_accept(new_pcb, _lwip_tcp_accept);
// Socket is no longer considered "new" for purposes of polling
socket->state = STATE_LISTENING;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(lwip_socket_listen_obj, 1, 2, lwip_socket_listen);
STATIC mp_obj_t lwip_socket_accept(mp_obj_t self_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
if (socket->type != MOD_NETWORK_SOCK_STREAM) {
mp_raise_OSError(MP_EOPNOTSUPP);
}
// Create new socket object, do it here because we must not raise an out-of-memory
// exception when the LWIP concurrency lock is held
lwip_socket_obj_t *socket2 = m_new_obj_with_finaliser(lwip_socket_obj_t);
socket2->base.type = &lwip_socket_type;
MICROPY_PY_LWIP_ENTER
if (socket->pcb.tcp == NULL) {
MICROPY_PY_LWIP_EXIT
m_del_obj(lwip_socket_obj_t, socket2);
mp_raise_OSError(MP_EBADF);
}
// I need to do this because "tcp_accepted", later, is a macro.
struct tcp_pcb *listener = socket->pcb.tcp;
if (listener->state != LISTEN) {
MICROPY_PY_LWIP_EXIT
m_del_obj(lwip_socket_obj_t, socket2);
mp_raise_OSError(MP_EINVAL);
}
// accept incoming connection
struct tcp_pcb *volatile *incoming_connection = &lwip_socket_incoming_array(socket)[socket->incoming.connection.iget];
if (*incoming_connection == NULL) {
if (socket->timeout == 0) {
MICROPY_PY_LWIP_EXIT
m_del_obj(lwip_socket_obj_t, socket2);
mp_raise_OSError(MP_EAGAIN);
} else if (socket->timeout != -1) {
mp_uint_t retries = socket->timeout / 100;
while (*incoming_connection == NULL) {
MICROPY_PY_LWIP_EXIT
if (retries-- == 0) {
m_del_obj(lwip_socket_obj_t, socket2);
mp_raise_OSError(MP_ETIMEDOUT);
}
mp_hal_delay_ms(100);
MICROPY_PY_LWIP_REENTER
}
} else {
while (*incoming_connection == NULL) {
MICROPY_PY_LWIP_EXIT
poll_sockets();
MICROPY_PY_LWIP_REENTER
}
}
}
// We get a new pcb handle...
socket2->pcb.tcp = *incoming_connection;
if (++socket->incoming.connection.iget >= socket->incoming.connection.alloc) {
socket->incoming.connection.iget = 0;
}
*incoming_connection = NULL;
// ...and set up the new socket for it.
socket2->domain = MOD_NETWORK_AF_INET;
socket2->type = MOD_NETWORK_SOCK_STREAM;
socket2->incoming.pbuf = NULL;
socket2->timeout = socket->timeout;
socket2->state = STATE_CONNECTED;
socket2->recv_offset = 0;
socket2->callback = MP_OBJ_NULL;
tcp_arg(socket2->pcb.tcp, (void *)socket2);
tcp_err(socket2->pcb.tcp, _lwip_tcp_error);
tcp_recv(socket2->pcb.tcp, _lwip_tcp_recv);
tcp_accepted(listener);
MICROPY_PY_LWIP_EXIT
// make the return value
uint8_t ip[NETUTILS_IPV4ADDR_BUFSIZE];
memcpy(ip, &(socket2->pcb.tcp->remote_ip), sizeof(ip));
mp_uint_t port = (mp_uint_t)socket2->pcb.tcp->remote_port;
mp_obj_tuple_t *client = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
client->items[0] = MP_OBJ_FROM_PTR(socket2);
client->items[1] = netutils_format_inet_addr(ip, port, NETUTILS_BIG);
return MP_OBJ_FROM_PTR(client);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(lwip_socket_accept_obj, lwip_socket_accept);
STATIC mp_obj_t lwip_socket_connect(mp_obj_t self_in, mp_obj_t addr_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
if (socket->pcb.tcp == NULL) {
mp_raise_OSError(MP_EBADF);
}
// get address
uint8_t ip[NETUTILS_IPV4ADDR_BUFSIZE];
mp_uint_t port = netutils_parse_inet_addr(addr_in, ip, NETUTILS_BIG);
ip_addr_t dest;
IP4_ADDR(&dest, ip[0], ip[1], ip[2], ip[3]);
err_t err = ERR_ARG;
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
if (socket->state != STATE_NEW) {
if (socket->state == STATE_CONNECTED) {
mp_raise_OSError(MP_EISCONN);
} else {
mp_raise_OSError(MP_EALREADY);
}
}
// Register our receive callback.
MICROPY_PY_LWIP_ENTER
tcp_recv(socket->pcb.tcp, _lwip_tcp_recv);
socket->state = STATE_CONNECTING;
err = tcp_connect(socket->pcb.tcp, &dest, port, _lwip_tcp_connected);
if (err != ERR_OK) {
MICROPY_PY_LWIP_EXIT
socket->state = STATE_NEW;
mp_raise_OSError(error_lookup_table[-err]);
}
socket->peer_port = (mp_uint_t)port;
memcpy(socket->peer, &dest, sizeof(socket->peer));
MICROPY_PY_LWIP_EXIT
// And now we wait...
if (socket->timeout != -1) {
for (mp_uint_t retries = socket->timeout / 100; retries--;) {
mp_hal_delay_ms(100);
if (socket->state != STATE_CONNECTING) {
break;
}
}
if (socket->state == STATE_CONNECTING) {
mp_raise_OSError(MP_EINPROGRESS);
}
} else {
while (socket->state == STATE_CONNECTING) {
poll_sockets();
}
}
if (socket->state == STATE_CONNECTED) {
err = ERR_OK;
} else {
err = socket->state;
}
break;
}
case MOD_NETWORK_SOCK_DGRAM: {
err = udp_connect(socket->pcb.udp, &dest, port);
break;
}
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW: {
err = raw_connect(socket->pcb.raw, &dest);
break;
}
#endif
}
if (err != ERR_OK) {
mp_raise_OSError(error_lookup_table[-err]);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(lwip_socket_connect_obj, lwip_socket_connect);
STATIC void lwip_socket_check_connected(lwip_socket_obj_t *socket) {
if (socket->pcb.tcp == NULL) {
// not connected
int _errno = error_lookup_table[-socket->state];
socket->state = _ERR_BADF;
mp_raise_OSError(_errno);
}
}
STATIC mp_obj_t lwip_socket_send(mp_obj_t self_in, mp_obj_t buf_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
int _errno;
lwip_socket_check_connected(socket);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = 0;
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
ret = lwip_tcp_send(socket, bufinfo.buf, bufinfo.len, &_errno);
break;
}
case MOD_NETWORK_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW:
#endif
ret = lwip_raw_udp_send(socket, bufinfo.buf, bufinfo.len, NULL, 0, &_errno);
break;
}
if (ret == -1) {
mp_raise_OSError(_errno);
}
return mp_obj_new_int_from_uint(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(lwip_socket_send_obj, lwip_socket_send);
STATIC mp_obj_t lwip_socket_recv(mp_obj_t self_in, mp_obj_t len_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
int _errno;
lwip_socket_check_connected(socket);
mp_int_t len = mp_obj_get_int(len_in);
vstr_t vstr;
vstr_init_len(&vstr, len);
mp_uint_t ret = 0;
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
ret = lwip_tcp_receive(socket, (byte *)vstr.buf, len, &_errno);
break;
}
case MOD_NETWORK_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW:
#endif
ret = lwip_raw_udp_receive(socket, (byte *)vstr.buf, len, NULL, NULL, &_errno);
break;
}
if (ret == -1) {
mp_raise_OSError(_errno);
}
if (ret == 0) {
return mp_const_empty_bytes;
}
vstr.len = ret;
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(lwip_socket_recv_obj, lwip_socket_recv);
STATIC mp_obj_t lwip_socket_sendto(mp_obj_t self_in, mp_obj_t data_in, mp_obj_t addr_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
int _errno;
lwip_socket_check_connected(socket);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(data_in, &bufinfo, MP_BUFFER_READ);
uint8_t ip[NETUTILS_IPV4ADDR_BUFSIZE];
mp_uint_t port = netutils_parse_inet_addr(addr_in, ip, NETUTILS_BIG);
mp_uint_t ret = 0;
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
ret = lwip_tcp_send(socket, bufinfo.buf, bufinfo.len, &_errno);
break;
}
case MOD_NETWORK_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW:
#endif
ret = lwip_raw_udp_send(socket, bufinfo.buf, bufinfo.len, ip, port, &_errno);
break;
}
if (ret == -1) {
mp_raise_OSError(_errno);
}
return mp_obj_new_int_from_uint(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(lwip_socket_sendto_obj, lwip_socket_sendto);
STATIC mp_obj_t lwip_socket_recvfrom(mp_obj_t self_in, mp_obj_t len_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
int _errno;
lwip_socket_check_connected(socket);
mp_int_t len = mp_obj_get_int(len_in);
vstr_t vstr;
vstr_init_len(&vstr, len);
byte ip[4];
mp_uint_t port;
mp_uint_t ret = 0;
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
memcpy(ip, &socket->peer, sizeof(socket->peer));
port = (mp_uint_t)socket->peer_port;
ret = lwip_tcp_receive(socket, (byte *)vstr.buf, len, &_errno);
break;
}
case MOD_NETWORK_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW:
#endif
ret = lwip_raw_udp_receive(socket, (byte *)vstr.buf, len, ip, &port, &_errno);
break;
}
if (ret == -1) {
mp_raise_OSError(_errno);
}
mp_obj_t tuple[2];
if (ret == 0) {
tuple[0] = mp_const_empty_bytes;
} else {
vstr.len = ret;
tuple[0] = mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
tuple[1] = netutils_format_inet_addr(ip, port, NETUTILS_BIG);
return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(lwip_socket_recvfrom_obj, lwip_socket_recvfrom);
STATIC mp_obj_t lwip_socket_sendall(mp_obj_t self_in, mp_obj_t buf_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
lwip_socket_check_connected(socket);
int _errno;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = 0;
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
if (socket->timeout == 0) {
// Behavior of sendall() for non-blocking sockets isn't explicitly specified.
// But it's specified that "On error, an exception is raised, there is no
// way to determine how much data, if any, was successfully sent." Then, the
// most useful behavior is: check whether we will be able to send all of input
// data without EAGAIN, and if won't be, raise it without sending any.
if (bufinfo.len > tcp_sndbuf(socket->pcb.tcp)) {
mp_raise_OSError(MP_EAGAIN);
}
}
// TODO: In CPython3.5, socket timeout should apply to the
// entire sendall() operation, not to individual send() chunks.
while (bufinfo.len != 0) {
ret = lwip_tcp_send(socket, bufinfo.buf, bufinfo.len, &_errno);
if (ret == -1) {
mp_raise_OSError(_errno);
}
bufinfo.len -= ret;
bufinfo.buf = (char *)bufinfo.buf + ret;
}
break;
}
case MOD_NETWORK_SOCK_DGRAM:
mp_raise_NotImplementedError(NULL);
break;
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(lwip_socket_sendall_obj, lwip_socket_sendall);
STATIC mp_obj_t lwip_socket_settimeout(mp_obj_t self_in, mp_obj_t timeout_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
mp_uint_t timeout;
if (timeout_in == mp_const_none) {
timeout = -1;
} else {
#if MICROPY_PY_BUILTINS_FLOAT
timeout = (mp_uint_t)(MICROPY_FLOAT_CONST(1000.0) * mp_obj_get_float(timeout_in));
#else
timeout = 1000 * mp_obj_get_int(timeout_in);
#endif
}
socket->timeout = timeout;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(lwip_socket_settimeout_obj, lwip_socket_settimeout);
STATIC mp_obj_t lwip_socket_setblocking(mp_obj_t self_in, mp_obj_t flag_in) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
bool val = mp_obj_is_true(flag_in);
if (val) {
socket->timeout = -1;
} else {
socket->timeout = 0;
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(lwip_socket_setblocking_obj, lwip_socket_setblocking);
STATIC mp_obj_t lwip_socket_setsockopt(size_t n_args, const mp_obj_t *args) {
(void)n_args; // always 4
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(args[0]);
int opt = mp_obj_get_int(args[2]);
if (opt == 20) {
if (args[3] == mp_const_none) {
socket->callback = MP_OBJ_NULL;
} else {
socket->callback = args[3];
}
return mp_const_none;
}
switch (opt) {
// level: SOL_SOCKET
case SOF_REUSEADDR: {
mp_int_t val = mp_obj_get_int(args[3]);
// Options are common for UDP and TCP pcb's.
if (val) {
ip_set_option(socket->pcb.tcp, SOF_REUSEADDR);
} else {
ip_reset_option(socket->pcb.tcp, SOF_REUSEADDR);
}
break;
}
// level: IPPROTO_IP
case IP_ADD_MEMBERSHIP: {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[3], &bufinfo, MP_BUFFER_READ);
if (bufinfo.len != sizeof(ip_addr_t) * 2) {
mp_raise_ValueError(NULL);
}
// POSIX setsockopt has order: group addr, if addr, lwIP has it vice-versa
err_t err = igmp_joingroup((ip_addr_t *)bufinfo.buf + 1, bufinfo.buf);
if (err != ERR_OK) {
mp_raise_OSError(error_lookup_table[-err]);
}
break;
}
default:
printf("Warning: lwip.setsockopt() not implemented\n");
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(lwip_socket_setsockopt_obj, 4, 4, lwip_socket_setsockopt);
STATIC mp_obj_t lwip_socket_makefile(size_t n_args, const mp_obj_t *args) {
(void)n_args;
return args[0];
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(lwip_socket_makefile_obj, 1, 3, lwip_socket_makefile);
STATIC mp_uint_t lwip_socket_read(mp_obj_t self_in, void *buf, mp_uint_t size, int *errcode) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM:
return lwip_tcp_receive(socket, buf, size, errcode);
case MOD_NETWORK_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW:
#endif
return lwip_raw_udp_receive(socket, buf, size, NULL, NULL, errcode);
}
// Unreachable
return MP_STREAM_ERROR;
}
STATIC mp_uint_t lwip_socket_write(mp_obj_t self_in, const void *buf, mp_uint_t size, int *errcode) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM:
return lwip_tcp_send(socket, buf, size, errcode);
case MOD_NETWORK_SOCK_DGRAM:
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW:
#endif
return lwip_raw_udp_send(socket, buf, size, NULL, 0, errcode);
}
// Unreachable
return MP_STREAM_ERROR;
}
STATIC err_t _lwip_tcp_close_poll(void *arg, struct tcp_pcb *pcb) {
// Connection has not been cleanly closed so just abort it to free up memory
tcp_poll(pcb, NULL, 0);
tcp_abort(pcb);
return ERR_OK;
}
STATIC mp_uint_t lwip_socket_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
lwip_socket_obj_t *socket = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret;
MICROPY_PY_LWIP_ENTER
if (request == MP_STREAM_POLL) {
uintptr_t flags = arg;
ret = 0;
if (flags & MP_STREAM_POLL_RD) {
if (socket->state == STATE_LISTENING) {
// Listening TCP socket may have one or multiple connections waiting
if (lwip_socket_incoming_array(socket)[socket->incoming.connection.iget] != NULL) {
ret |= MP_STREAM_POLL_RD;
}
} else {
// Otherwise there is just one slot for incoming data
if (socket->incoming.pbuf != NULL) {
ret |= MP_STREAM_POLL_RD;
}
}
}
if (flags & MP_STREAM_POLL_WR) {
if (socket->type == MOD_NETWORK_SOCK_DGRAM && socket->pcb.udp != NULL) {
// UDP socket is writable
ret |= MP_STREAM_POLL_WR;
#if MICROPY_PY_LWIP_SOCK_RAW
} else if (socket->type == MOD_NETWORK_SOCK_RAW && socket->pcb.raw != NULL) {
// raw socket is writable
ret |= MP_STREAM_POLL_WR;
#endif
} else if (socket->pcb.tcp != NULL && tcp_sndbuf(socket->pcb.tcp) > 0) {
// TCP socket is writable
// Note: pcb.tcp==NULL if state<0, and in this case we can't call tcp_sndbuf
ret |= MP_STREAM_POLL_WR;
}
}
if (socket->state == STATE_NEW) {
// New sockets are not connected so set HUP
ret |= MP_STREAM_POLL_HUP;
} else if (socket->state == STATE_PEER_CLOSED) {
// Peer-closed socket is both readable and writable: read will
// return EOF, write - error. Without this poll will hang on a
// socket which was closed by peer.
ret |= flags & (MP_STREAM_POLL_RD | MP_STREAM_POLL_WR);
} else if (socket->state == ERR_RST) {
// Socket was reset by peer, a write will return an error
ret |= flags & MP_STREAM_POLL_WR;
ret |= MP_STREAM_POLL_HUP;
} else if (socket->state == _ERR_BADF) {
ret |= MP_STREAM_POLL_NVAL;
} else if (socket->state < 0) {
// Socket in some other error state, use catch-all ERR flag
// TODO: may need to set other return flags here
ret |= MP_STREAM_POLL_ERR;
}
} else if (request == MP_STREAM_CLOSE) {
if (socket->pcb.tcp == NULL) {
MICROPY_PY_LWIP_EXIT
return 0;
}
// Free any incoming buffers or connections that are stored
lwip_socket_free_incoming(socket);
switch (socket->type) {
case MOD_NETWORK_SOCK_STREAM: {
// Deregister callback (pcb.tcp is set to NULL below so must deregister now)
tcp_arg(socket->pcb.tcp, NULL);
tcp_err(socket->pcb.tcp, NULL);
tcp_recv(socket->pcb.tcp, NULL);
if (socket->pcb.tcp->state != LISTEN) {
// Schedule a callback to abort the connection if it's not cleanly closed after
// the given timeout. The callback must be set before calling tcp_close since
// the latter may free the pcb; if it doesn't then the callback will be active.
tcp_poll(socket->pcb.tcp, _lwip_tcp_close_poll, MICROPY_PY_LWIP_TCP_CLOSE_TIMEOUT_MS / 500);
}
if (tcp_close(socket->pcb.tcp) != ERR_OK) {
DEBUG_printf("lwip_close: had to call tcp_abort()\n");
tcp_abort(socket->pcb.tcp);
}
break;
}
case MOD_NETWORK_SOCK_DGRAM:
udp_recv(socket->pcb.udp, NULL, NULL);
udp_remove(socket->pcb.udp);
break;
#if MICROPY_PY_LWIP_SOCK_RAW
case MOD_NETWORK_SOCK_RAW:
raw_recv(socket->pcb.raw, NULL, NULL);
raw_remove(socket->pcb.raw);
break;
#endif
}
socket->pcb.tcp = NULL;
socket->state = _ERR_BADF;
ret = 0;
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
MICROPY_PY_LWIP_EXIT
return ret;
}
STATIC const mp_rom_map_elem_t lwip_socket_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&mp_stream_close_obj) },
{ MP_ROM_QSTR(MP_QSTR_close), MP_ROM_PTR(&mp_stream_close_obj) },
{ MP_ROM_QSTR(MP_QSTR_bind), MP_ROM_PTR(&lwip_socket_bind_obj) },
{ MP_ROM_QSTR(MP_QSTR_listen), MP_ROM_PTR(&lwip_socket_listen_obj) },
{ MP_ROM_QSTR(MP_QSTR_accept), MP_ROM_PTR(&lwip_socket_accept_obj) },
{ MP_ROM_QSTR(MP_QSTR_connect), MP_ROM_PTR(&lwip_socket_connect_obj) },
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&lwip_socket_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&lwip_socket_recv_obj) },
{ MP_ROM_QSTR(MP_QSTR_sendto), MP_ROM_PTR(&lwip_socket_sendto_obj) },
{ MP_ROM_QSTR(MP_QSTR_recvfrom), MP_ROM_PTR(&lwip_socket_recvfrom_obj) },
{ MP_ROM_QSTR(MP_QSTR_sendall), MP_ROM_PTR(&lwip_socket_sendall_obj) },
{ MP_ROM_QSTR(MP_QSTR_settimeout), MP_ROM_PTR(&lwip_socket_settimeout_obj) },
{ MP_ROM_QSTR(MP_QSTR_setblocking), MP_ROM_PTR(&lwip_socket_setblocking_obj) },
{ MP_ROM_QSTR(MP_QSTR_setsockopt), MP_ROM_PTR(&lwip_socket_setsockopt_obj) },
{ MP_ROM_QSTR(MP_QSTR_makefile), MP_ROM_PTR(&lwip_socket_makefile_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
};
STATIC MP_DEFINE_CONST_DICT(lwip_socket_locals_dict, lwip_socket_locals_dict_table);
STATIC const mp_stream_p_t lwip_socket_stream_p = {
.read = lwip_socket_read,
.write = lwip_socket_write,
.ioctl = lwip_socket_ioctl,
};
STATIC const mp_obj_type_t lwip_socket_type = {
{ &mp_type_type },
.name = MP_QSTR_socket,
.print = lwip_socket_print,
.make_new = lwip_socket_make_new,
.protocol = &lwip_socket_stream_p,
.locals_dict = (mp_obj_dict_t *)&lwip_socket_locals_dict,
};
/******************************************************************************/
// Support functions for memory protection. lwIP has its own memory management
// routines for its internal structures, and since they might be called in
// interrupt handlers, they need some protection.
sys_prot_t sys_arch_protect() {
return (sys_prot_t)MICROPY_BEGIN_ATOMIC_SECTION();
}
void sys_arch_unprotect(sys_prot_t state) {
MICROPY_END_ATOMIC_SECTION((mp_uint_t)state);
}
/******************************************************************************/
// Polling callbacks for the interfaces connected to lwIP. Right now it calls
// itself a "list" but isn't; we only support a single interface.
typedef struct nic_poll {
void (*poll)(void *arg);
void *poll_arg;
} nic_poll_t;
STATIC nic_poll_t lwip_poll_list;
void mod_lwip_register_poll(void (*poll)(void *arg), void *poll_arg) {
lwip_poll_list.poll = poll;
lwip_poll_list.poll_arg = poll_arg;
}
void mod_lwip_deregister_poll(void (*poll)(void *arg), void *poll_arg) {
lwip_poll_list.poll = NULL;
}
/******************************************************************************/
// The lwip global functions.
STATIC mp_obj_t mod_lwip_reset() {
lwip_init();
lwip_poll_list.poll = NULL;
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_lwip_reset_obj, mod_lwip_reset);
STATIC mp_obj_t mod_lwip_callback() {
if (lwip_poll_list.poll != NULL) {
lwip_poll_list.poll(lwip_poll_list.poll_arg);
}
sys_check_timeouts();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(mod_lwip_callback_obj, mod_lwip_callback);
typedef struct _getaddrinfo_state_t {
volatile int status;
volatile ip_addr_t ipaddr;
} getaddrinfo_state_t;
// Callback for incoming DNS requests.
#if LWIP_VERSION_MAJOR < 2
STATIC void lwip_getaddrinfo_cb(const char *name, ip_addr_t *ipaddr, void *arg)
#else
STATIC void lwip_getaddrinfo_cb(const char *name, const ip_addr_t *ipaddr, void *arg)
#endif
{
getaddrinfo_state_t *state = arg;
if (ipaddr != NULL) {
state->status = 1;
state->ipaddr = *ipaddr;
} else {
// error
state->status = -2;
}
}
// lwip.getaddrinfo
STATIC mp_obj_t lwip_getaddrinfo(size_t n_args, const mp_obj_t *args) {
mp_obj_t host_in = args[0], port_in = args[1];
const char *host = mp_obj_str_get_str(host_in);
mp_int_t port = mp_obj_get_int(port_in);
// If constraints were passed then check they are compatible with the supported params
if (n_args > 2) {
mp_int_t family = mp_obj_get_int(args[2]);
mp_int_t type = 0;
mp_int_t proto = 0;
mp_int_t flags = 0;
if (n_args > 3) {
type = mp_obj_get_int(args[3]);
if (n_args > 4) {
proto = mp_obj_get_int(args[4]);
if (n_args > 5) {
flags = mp_obj_get_int(args[5]);
}
}
}
if (!((family == 0 || family == MOD_NETWORK_AF_INET)
&& (type == 0 || type == MOD_NETWORK_SOCK_STREAM)
&& proto == 0
&& flags == 0)) {
mp_warning(MP_WARN_CAT(RuntimeWarning), "unsupported getaddrinfo constraints");
}
}
getaddrinfo_state_t state;
state.status = 0;
MICROPY_PY_LWIP_ENTER
err_t ret = dns_gethostbyname(host, (ip_addr_t *)&state.ipaddr, lwip_getaddrinfo_cb, &state);
MICROPY_PY_LWIP_EXIT
switch (ret) {
case ERR_OK:
// cached
state.status = 1;
break;
case ERR_INPROGRESS:
while (state.status == 0) {
poll_sockets();
}
break;
default:
state.status = ret;
}
if (state.status < 0) {
// TODO: CPython raises gaierror, we raise with native lwIP negative error
// values, to differentiate from normal errno's at least in such way.
mp_raise_OSError(state.status);
}
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(5, NULL));
tuple->items[0] = MP_OBJ_NEW_SMALL_INT(MOD_NETWORK_AF_INET);
tuple->items[1] = MP_OBJ_NEW_SMALL_INT(MOD_NETWORK_SOCK_STREAM);
tuple->items[2] = MP_OBJ_NEW_SMALL_INT(0);
tuple->items[3] = MP_OBJ_NEW_QSTR(MP_QSTR_);
tuple->items[4] = netutils_format_inet_addr((uint8_t *)&state.ipaddr, port, NETUTILS_BIG);
return mp_obj_new_list(1, (mp_obj_t *)&tuple);
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(lwip_getaddrinfo_obj, 2, 6, lwip_getaddrinfo);
// Debug functions
STATIC mp_obj_t lwip_print_pcbs() {
tcp_debug_print_pcbs();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(lwip_print_pcbs_obj, lwip_print_pcbs);
STATIC const mp_rom_map_elem_t mp_module_lwip_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_lwip) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&mod_lwip_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&mod_lwip_callback_obj) },
{ MP_ROM_QSTR(MP_QSTR_getaddrinfo), MP_ROM_PTR(&lwip_getaddrinfo_obj) },
{ MP_ROM_QSTR(MP_QSTR_print_pcbs), MP_ROM_PTR(&lwip_print_pcbs_obj) },
// objects
{ MP_ROM_QSTR(MP_QSTR_socket), MP_ROM_PTR(&lwip_socket_type) },
#ifdef MICROPY_PY_LWIP_SLIP
{ MP_ROM_QSTR(MP_QSTR_slip), MP_ROM_PTR(&lwip_slip_type) },
#endif
// class constants
{ MP_ROM_QSTR(MP_QSTR_AF_INET), MP_ROM_INT(MOD_NETWORK_AF_INET) },
{ MP_ROM_QSTR(MP_QSTR_AF_INET6), MP_ROM_INT(MOD_NETWORK_AF_INET6) },
{ MP_ROM_QSTR(MP_QSTR_SOCK_STREAM), MP_ROM_INT(MOD_NETWORK_SOCK_STREAM) },
{ MP_ROM_QSTR(MP_QSTR_SOCK_DGRAM), MP_ROM_INT(MOD_NETWORK_SOCK_DGRAM) },
#if MICROPY_PY_LWIP_SOCK_RAW
{ MP_ROM_QSTR(MP_QSTR_SOCK_RAW), MP_ROM_INT(MOD_NETWORK_SOCK_RAW) },
#endif
{ MP_ROM_QSTR(MP_QSTR_SOL_SOCKET), MP_ROM_INT(1) },
{ MP_ROM_QSTR(MP_QSTR_SO_REUSEADDR), MP_ROM_INT(SOF_REUSEADDR) },
{ MP_ROM_QSTR(MP_QSTR_IPPROTO_IP), MP_ROM_INT(0) },
{ MP_ROM_QSTR(MP_QSTR_IP_ADD_MEMBERSHIP), MP_ROM_INT(IP_ADD_MEMBERSHIP) },
};
STATIC MP_DEFINE_CONST_DICT(mp_module_lwip_globals, mp_module_lwip_globals_table);
const mp_obj_module_t mp_module_lwip = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t *)&mp_module_lwip_globals,
};
MP_REGISTER_MODULE(MP_QSTR_lwip, mp_module_lwip);
// On LWIP-ports, this is the usocket module (replaces extmod/modusocket.c).
MP_REGISTER_MODULE(MP_QSTR_usocket, mp_module_lwip);
#endif // MICROPY_PY_LWIP