312 lines
8.1 KiB
C
312 lines
8.1 KiB
C
/***********************************************************************
|
|
|
|
formatfloat.c - Ruutine for converting a single-precision floating
|
|
point number into a string.
|
|
|
|
The code in this funcion was inspired from Fred Bayer's pdouble.c.
|
|
Since pdouble.c was released as Public Domain, I'm releasing this
|
|
code as public domain as well.
|
|
|
|
The original code can be found in https://github.com/dhylands/format-float
|
|
|
|
Dave Hylands
|
|
|
|
***********************************************************************/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
|
|
#include "mpconfig.h"
|
|
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
|
#include "formatfloat.h"
|
|
|
|
// 1 sign bit, 8 exponent bits, and 23 mantissa bits.
|
|
// exponent values 0 and 255 are reserved, exponent can be 1 to 254.
|
|
// exponent is stored with a bias of 127.
|
|
// The min and max floats are on the order of 1x10^37 and 1x10^-37
|
|
|
|
#define FLT_SIGN_MASK 0x80000000
|
|
#define FLT_EXP_MASK 0x7F800000
|
|
#define FLT_MAN_MASK 0x007FFFFF
|
|
|
|
static const float g_pos_pow[] = {
|
|
1e32, 1e16, 1e8, 1e4, 1e2, 1e1
|
|
};
|
|
static const float g_neg_pow[] = {
|
|
1e-32, 1e-16, 1e-8, 1e-4, 1e-2, 1e-1
|
|
};
|
|
|
|
int format_float(float f, char *buf, size_t buf_size, char fmt, int prec, char sign) {
|
|
|
|
char *s = buf;
|
|
int buf_remaining = buf_size - 1;
|
|
|
|
union {
|
|
float f;
|
|
uint32_t u;
|
|
} num = {f};
|
|
|
|
if (buf_size < 7) {
|
|
// Smallest exp notion is -9e+99 which is 6 chars plus terminating
|
|
// nulll.
|
|
|
|
if (buf_size >= 2) {
|
|
*s++ = '?';
|
|
}
|
|
if (buf_size >= 1) {
|
|
*s++ = '\0';
|
|
}
|
|
return buf_size >= 2;
|
|
}
|
|
if (num.u & FLT_SIGN_MASK) {
|
|
*s++ = '-';
|
|
num.u &= ~FLT_SIGN_MASK;
|
|
} else {
|
|
if (sign) {
|
|
*s++ = sign;
|
|
}
|
|
}
|
|
buf_remaining -= (s - buf); // Adjust for sign
|
|
|
|
if ((num.u & FLT_EXP_MASK) == FLT_EXP_MASK) {
|
|
char uc = fmt & 0x20;
|
|
if ((num.u & FLT_MAN_MASK) == 0) {
|
|
*s++ = 'I' ^ uc;
|
|
*s++ = 'N' ^ uc;
|
|
*s++ = 'F' ^ uc;
|
|
} else {
|
|
*s++ = 'N' ^ uc;
|
|
*s++ = 'A' ^ uc;
|
|
*s++ = 'N' ^ uc;
|
|
}
|
|
*s = '\0';
|
|
return s - buf;
|
|
}
|
|
|
|
if (prec < 0) {
|
|
prec = 6;
|
|
}
|
|
char e_char = 'E' | (fmt & 0x20); // e_char will match case of fmt
|
|
fmt |= 0x20; // Force fmt to be lowercase
|
|
char org_fmt = fmt;
|
|
if (fmt == 'g' && prec == 0) {
|
|
prec = 1;
|
|
}
|
|
int e, e1;
|
|
int dec = 0;
|
|
char e_sign = '\0';
|
|
int num_digits = 0;
|
|
const float *pos_pow = g_pos_pow;
|
|
const float *neg_pow = g_neg_pow;
|
|
|
|
if (num.u == 0) {
|
|
e = 0;
|
|
if (fmt == 'e') {
|
|
e_sign = '+';
|
|
} else if (fmt == 'f') {
|
|
num_digits = prec + 1;
|
|
}
|
|
} else if (num.u < 0x3f800000) { // f < 1.0
|
|
// Build negative exponent
|
|
for (e = 0, e1 = 32; e1; e1 >>= 1, pos_pow++, neg_pow++) {
|
|
if (*neg_pow > num.f) {
|
|
e += e1;
|
|
num.f *= *pos_pow;
|
|
}
|
|
}
|
|
if (num.f < 1.0F && num.f >= 0.9999995F) {
|
|
num.f = 1.0F;
|
|
} else {
|
|
e++;
|
|
num.f *= 10.0F;
|
|
}
|
|
|
|
// If the user specified 'g' format, and e is <= 4, then we'll switch
|
|
// to the fixed format ('f')
|
|
|
|
if (fmt == 'f' || (fmt == 'g' && e <= 4)) {
|
|
fmt = 'f';
|
|
dec = -1;
|
|
*s++ = '0';
|
|
|
|
if (prec + e + 1 > buf_remaining) {
|
|
prec = buf_remaining - e - 1;
|
|
}
|
|
|
|
if (org_fmt == 'g') {
|
|
prec += (e - 1);
|
|
}
|
|
num_digits = prec;
|
|
if (num_digits) {
|
|
*s++ = '.';
|
|
while (--e && num_digits) {
|
|
*s++ = '0';
|
|
num_digits--;
|
|
}
|
|
}
|
|
} else {
|
|
// For e & g formats, we'll be printing the exponent, so set the
|
|
// sign.
|
|
e_sign = '-';
|
|
dec = 0;
|
|
|
|
if (prec > (buf_remaining - 6)) {
|
|
prec = buf_remaining - 6;
|
|
if (fmt == 'g') {
|
|
prec++;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Build positive exponent
|
|
for (e = 0, e1 = 32; e1; e1 >>= 1, pos_pow++, neg_pow++) {
|
|
if (*pos_pow <= num.f) {
|
|
e += e1;
|
|
num.f *= *neg_pow;
|
|
}
|
|
}
|
|
|
|
// If the user specified fixed format (fmt == 'f') and e makes the
|
|
// number too big to fit into the available buffer, then we'll
|
|
// switch to the 'e' format.
|
|
|
|
if (fmt == 'f') {
|
|
if (e >= buf_remaining) {
|
|
fmt = 'e';
|
|
} else if ((e + prec + 2) > buf_remaining) {
|
|
prec = buf_remaining - e - 2;
|
|
if (prec < 0) {
|
|
// This means no decimal point, so we can add one back
|
|
// for the decimal.
|
|
prec++;
|
|
}
|
|
}
|
|
}
|
|
if (fmt == 'e' && prec > (buf_remaining - 6)) {
|
|
prec = buf_remaining - 6;
|
|
}
|
|
// If the user specified 'g' format, and e is < prec, then we'll switch
|
|
// to the fixed format.
|
|
|
|
if (fmt == 'g' && e < prec) {
|
|
fmt = 'f';
|
|
prec -= (e + 1);
|
|
}
|
|
if (fmt == 'f') {
|
|
dec = e;
|
|
num_digits = prec + e + 1;
|
|
} else {
|
|
e_sign = '+';
|
|
}
|
|
}
|
|
if (prec < 0) {
|
|
// This can happen when the prec is trimmed to prevent buffer overflow
|
|
prec = 0;
|
|
}
|
|
|
|
// We now have num.f as a floating point number between >= 1 and < 10
|
|
// (or equal to zero), and e contains the absolute value of the power of
|
|
// 10 exponent. and (dec + 1) == the number of dgits before the decimal.
|
|
|
|
// For e, prec is # digits after the decimal
|
|
// For f, prec is # digits after the decimal
|
|
// For g, prec is the max number of significant digits
|
|
//
|
|
// For e & g there will be a single digit before the decimal
|
|
// for f there will be e digits before the decimal
|
|
|
|
if (fmt == 'e') {
|
|
num_digits = prec + 1;
|
|
} else if (fmt == 'g') {
|
|
if (prec == 0) {
|
|
prec = 1;
|
|
}
|
|
num_digits = prec;
|
|
}
|
|
|
|
// Print the digits of the mantissa
|
|
for (int i = 0; i < num_digits; ++i, --dec) {
|
|
int32_t d = num.f;
|
|
*s++ = '0' + d;
|
|
if (dec == 0 && prec > 0) {
|
|
*s++ = '.';
|
|
}
|
|
num.f -= (float)d;
|
|
num.f *= 10.0F;
|
|
}
|
|
|
|
// Round
|
|
if (num.f >= 5.0F) {
|
|
char *rs = s;
|
|
rs--;
|
|
while (1) {
|
|
if (*rs == '.') {
|
|
rs--;
|
|
continue;
|
|
}
|
|
if (*rs < '0' || *rs > '9') {
|
|
// + or -
|
|
rs++; // So we sit on the digit to the right of the sign
|
|
break;
|
|
}
|
|
if (*rs < '9') {
|
|
(*rs)++;
|
|
break;
|
|
}
|
|
*rs = '0';
|
|
if (rs == buf) {
|
|
break;
|
|
}
|
|
rs--;
|
|
}
|
|
if (*rs == '0') {
|
|
// We need to insert a 1
|
|
if (rs[1] == '.' && fmt != 'f') {
|
|
// We're going to round 9.99 to 10.00
|
|
// Move the decimal point
|
|
rs[0] = '.';
|
|
rs[1] = '0';
|
|
if (e_sign == '-') {
|
|
e--;
|
|
} else {
|
|
e++;
|
|
}
|
|
}
|
|
s++;
|
|
char *ss = s;
|
|
while (ss > rs) {
|
|
*ss = ss[-1];
|
|
ss--;
|
|
}
|
|
*rs = '1';
|
|
}
|
|
if (num.u < 0x3f800000 && fmt == 'f') {
|
|
// We rounded up to 1.0
|
|
prec--;
|
|
}
|
|
}
|
|
|
|
if (org_fmt == 'g' && prec > 0) {
|
|
// Remove trailing zeros and a trailing decimal point
|
|
while (s[-1] == '0') {
|
|
s--;
|
|
}
|
|
if (s[-1] == '.') {
|
|
s--;
|
|
}
|
|
}
|
|
// Append the exponent
|
|
if (e_sign) {
|
|
*s++ = e_char;
|
|
*s++ = e_sign;
|
|
*s++ = '0' + (e / 10);
|
|
*s++ = '0' + (e % 10);
|
|
}
|
|
*s = '\0';
|
|
|
|
return s - buf;
|
|
}
|
|
|
|
#endif
|