circuitpython/ports/atmel-samd/common-hal/canio/Listener.c

402 lines
14 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <math.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "shared/runtime/interrupt_char.h"
#include "common-hal/canio/__init__.h"
#include "common-hal/canio/Listener.h"
#include "shared-bindings/canio/Listener.h"
#include "shared-bindings/util.h"
#include "supervisor/shared/tick.h"
#include "component/can.h"
STATIC void allow_config_change(canio_can_obj_t *can) {
can->hw->CCCR.bit.INIT = 1;
while (!can->hw->CCCR.bit.INIT) {
}
can->hw->CCCR.bit.CCE = 1;
}
STATIC void prevent_config_change(canio_can_obj_t *can) {
can->hw->CCCR.bit.CCE = 0;
can->hw->CCCR.bit.INIT = 0;
while (can->hw->CCCR.bit.INIT) {
}
}
__attribute__((unused))
STATIC void static_assertions(void) {
MP_STATIC_ASSERT(CAN_GFC_ANFE_RXF0_Val + 1 == CAN_GFC_ANFE_RXF1_Val);
MP_STATIC_ASSERT(CAN_GFC_ANFS_RXF0_Val + 1 == CAN_GFC_ANFS_RXF1_Val);
MP_STATIC_ASSERT(CAN_SIDFE_0_SFEC_STF0M_Val + 1 == CAN_SIDFE_0_SFEC_STF1M_Val);
MP_STATIC_ASSERT(CAN_XIDFE_0_EFEC_STF0M_Val + 1 == CAN_XIDFE_0_EFEC_STF1M_Val);
}
STATIC bool single_id_filter(canio_match_obj_t *match) {
return match->mask == 0 || match->mask == match->id;
}
STATIC bool standard_filter_in_use(CanMramSidfe *filter) {
return filter->SIDFE_0.bit.SFEC != CAN_SIDFE_0_SFEC_DISABLE_Val;
}
STATIC bool extended_filter_in_use(CanMramXidfe *filter) {
return filter->XIDFE_0.bit.EFEC != CAN_XIDFE_0_EFEC_DISABLE_Val;
}
STATIC size_t num_filters_needed(size_t nmatch, canio_match_obj_t **matches, bool extended) {
size_t num_half_filters_needed = 1;
for (size_t i = 0; i < nmatch; i++) {
if (extended != matches[i]->extended) {
continue;
}
if (single_id_filter(matches[i])) {
num_half_filters_needed += 1;
} else {
num_half_filters_needed += 2;
}
}
return num_half_filters_needed / 2;
}
STATIC size_t num_filters_available(canio_can_obj_t *can, bool extended) {
size_t available = 0;
if (extended) {
for (size_t i = 0; i < MP_ARRAY_SIZE(can->state->extended_rx_filter); i++) {
if (!extended_filter_in_use(&can->state->extended_rx_filter[i])) {
available++;
}
}
} else {
for (size_t i = 0; i < MP_ARRAY_SIZE(can->state->standard_rx_filter); i++) {
if (!standard_filter_in_use(&can->state->standard_rx_filter[i])) {
available++;
}
}
}
return available;
}
STATIC void clear_filters(canio_listener_obj_t *self) {
canio_can_obj_t *can = self->can;
int fifo = self->fifo_idx;
// If it was a global accept, clear it
allow_config_change(can);
if (can->hw->GFC.bit.ANFS == CAN_GFC_ANFS_RXF0 + fifo) {
can->hw->GFC.bit.ANFS = CAN_GFC_ANFS_REJECT_Val;
}
if (can->hw->GFC.bit.ANFE == CAN_GFC_ANFE_RXF0 + fifo) {
can->hw->GFC.bit.ANFE = CAN_GFC_ANFE_REJECT_Val;
}
prevent_config_change(can);
// For each filter entry, if it pointed at this FIFO set it to DISABLE
for (size_t i = 0; i < MP_ARRAY_SIZE(can->state->extended_rx_filter); i++) {
int val = CAN_XIDFE_0_EFEC_STF0M_Val + fifo;
if (can->state->extended_rx_filter[i].XIDFE_0.bit.EFEC == val) {
can->state->extended_rx_filter[i].XIDFE_0.bit.EFEC = CAN_XIDFE_0_EFEC_DISABLE_Val;
}
}
for (size_t i = 0; i < MP_ARRAY_SIZE(can->state->standard_rx_filter); i++) {
int val = CAN_SIDFE_0_SFEC_STF1M_Val + fifo;
if (can->state->standard_rx_filter[i].SIDFE_0.bit.SFEC == val) {
can->state->standard_rx_filter[i].SIDFE_0.bit.SFEC = CAN_SIDFE_0_SFEC_DISABLE_Val;
}
}
}
STATIC CanMramXidfe *next_extended_filter(canio_listener_obj_t *self, CanMramXidfe *start) {
CanMramXidfe *end = &self->can->state->extended_rx_filter[MP_ARRAY_SIZE(self->can->state->extended_rx_filter)];
if (start == NULL) {
start = self->can->state->extended_rx_filter;
} else {
start = start + 1;
}
while (extended_filter_in_use(start)) {
if (start == end) {
return NULL;
}
start = start + 1;
}
return start;
}
STATIC CanMramSidfe *next_standard_filter(canio_listener_obj_t *self, CanMramSidfe *start) {
CanMramSidfe *end = &self->can->state->standard_rx_filter[MP_ARRAY_SIZE(self->can->state->standard_rx_filter)];
if (start == NULL) {
start = self->can->state->standard_rx_filter;
} else {
start = start + 1;
}
while (standard_filter_in_use(start)) {
if (start == end) {
return NULL;
}
start = start + 1;
}
return start;
}
STATIC void install_standard_filter(CanMramSidfe *standard, int id1, int id2, int sfec, int sft) {
assert(standard);
CAN_SIDFE_0_Type val = {
.bit.SFID1 = id1,
.bit.SFID2 = id2,
.bit.SFEC = sfec,
.bit.SFT = sft,
};
standard->SIDFE_0 = val;
}
STATIC void install_extended_filter(CanMramXidfe *extended, int id1, int id2, int efec, int eft) {
assert(extended);
CAN_XIDFE_0_Type val0 = {
.bit.EFID1 = id1,
.bit.EFEC = efec,
};
CAN_XIDFE_1_Type val1 = {
.bit.EFID2 = id2,
.bit.EFT = eft,
};
// Set entry 0 second, because it has the enable bits (XIDFE_0_EFEC)
extended->XIDFE_1 = val1;
extended->XIDFE_0 = val0;
}
#define NO_ID (-1)
void set_filters(canio_listener_obj_t *self, size_t nmatch, canio_match_obj_t **matches) {
int fifo = self->fifo_idx;
if (!nmatch) {
allow_config_change(self->can);
self->can->hw->GFC.bit.ANFS = CAN_GFC_ANFS_RXF0_Val + fifo;
self->can->hw->GFC.bit.ANFE = CAN_GFC_ANFE_RXF0_Val + fifo;
self->can->hw->CCCR.bit.CCE = 0;
prevent_config_change(self->can);
return;
}
CanMramSidfe *standard = next_standard_filter(self, NULL);
CanMramXidfe *extended = next_extended_filter(self, NULL);
int first_id = NO_ID;
// step 1: single id standard matches
// we have to gather up pairs and stuff them in a single filter entry
for (size_t i = 0; i < nmatch; i++) {
canio_match_obj_t *match = matches[i];
if (match->extended) {
continue;
}
if (!single_id_filter(match)) {
continue;
}
if (first_id != NO_ID) {
install_standard_filter(standard, first_id, match->id, CAN_SIDFE_0_SFEC_STF0M_Val + fifo, CAN_SIDFE_0_SFT_DUAL_Val);
first_id = NO_ID;
standard = next_standard_filter(self, standard);
} else {
first_id = match->id;
}
}
// step 1.5. odd single id standard match
if (first_id != NO_ID) {
install_standard_filter(standard, first_id, first_id, CAN_SIDFE_0_SFEC_STF0M_Val + fifo, CAN_SIDFE_0_SFT_DUAL_Val);
standard = next_standard_filter(self, standard);
first_id = NO_ID;
}
// step 2: standard mask filter
for (size_t i = 0; i < nmatch; i++) {
canio_match_obj_t *match = matches[i];
if (match->extended) {
continue;
}
if (single_id_filter(match)) {
continue;
}
install_standard_filter(standard, match->id, match->mask, CAN_SIDFE_0_SFEC_STF0M_Val + fifo, CAN_SIDFE_0_SFT_CLASSIC_Val);
standard = next_standard_filter(self, standard);
}
// step 3: single id extended matches
// we have to gather up pairs and stuff them in a single filter entry
for (size_t i = 0; i < nmatch; i++) {
canio_match_obj_t *match = matches[i];
if (!match->extended) {
continue;
}
if (!single_id_filter(match)) {
continue;
}
if (first_id != NO_ID) {
install_extended_filter(extended, first_id, match->id, CAN_XIDFE_0_EFEC_STF0M_Val + fifo, CAN_XIDFE_1_EFT_DUAL_Val);
first_id = NO_ID;
extended = next_extended_filter(self, extended);
} else {
first_id = match->id;
}
}
// step 3.5. odd single id standard match
if (first_id != NO_ID) {
install_extended_filter(extended, first_id, first_id, CAN_XIDFE_0_EFEC_STF0M_Val + fifo, CAN_XIDFE_1_EFT_DUAL_Val);
extended = next_extended_filter(self, extended);
first_id = NO_ID;
}
// step 4: extended mask filters
for (size_t i = 0; i < nmatch; i++) {
canio_match_obj_t *match = matches[i];
if (!match->extended) {
continue;
}
if (single_id_filter(match)) {
continue;
}
install_extended_filter(extended, match->id, match->mask, CAN_XIDFE_0_EFEC_STF0M_Val + fifo, CAN_XIDFE_1_EFT_CLASSIC_Val);
extended = next_extended_filter(self, extended);
}
// phew, easy(!)
}
void common_hal_canio_listener_construct(canio_listener_obj_t *self, canio_can_obj_t *can, size_t nmatch, canio_match_obj_t **matches, float timeout) {
if (!can->fifo0_in_use) {
self->fifo_idx = 0;
self->fifo = can->state->rx0_fifo;
self->hw = (canio_rxfifo_reg_t *)&can->hw->RXF0C;
can->hw->IR.reg = CAN_IR_RF0N | CAN_IR_RF0W | CAN_IR_RF0F | CAN_IR_RF0L;
can->fifo0_in_use = true;
} else if (!can->fifo1_in_use) {
self->fifo_idx = 1;
self->fifo = can->state->rx1_fifo;
self->hw = (canio_rxfifo_reg_t *)&can->hw->RXF1C;
can->fifo1_in_use = true;
can->hw->IR.reg = CAN_IR_RF1N | CAN_IR_RF1W | CAN_IR_RF1F | CAN_IR_RF1L;
} else {
mp_raise_ValueError(translate("All RX FIFOs in use"));
}
if (!nmatch) {
if (can->hw->GFC.bit.ANFS == CAN_GFC_ANFS_RXF1_Val - self->fifo_idx) {
mp_raise_ValueError(translate("Already have all-matches listener"));
}
if (can->hw->GFC.bit.ANFE == CAN_GFC_ANFE_RXF1_Val - self->fifo_idx) {
mp_raise_ValueError(translate("Already have all-matches listener"));
}
}
if (num_filters_needed(nmatch, matches, false) > num_filters_available(can, false)) {
mp_raise_ValueError(translate("Filters too complex"));
}
if (num_filters_needed(nmatch, matches, true) > num_filters_available(can, true)) {
mp_raise_ValueError(translate("Filters too complex"));
}
// Nothing can fail now so it's safe to assign self->can
self->can = can;
set_filters(self, nmatch, matches);
common_hal_canio_listener_set_timeout(self, timeout);
}
void common_hal_canio_listener_set_timeout(canio_listener_obj_t *self, float timeout) {
self->timeout_ms = (int)MICROPY_FLOAT_C_FUN(ceil)(timeout * 1000);
}
float common_hal_canio_listener_get_timeout(canio_listener_obj_t *self) {
return self->timeout_ms / 1000.0f;
}
void common_hal_canio_listener_check_for_deinit(canio_listener_obj_t *self) {
if (!self->can) {
raise_deinited_error();
}
common_hal_canio_can_check_for_deinit(self->can);
}
int common_hal_canio_listener_in_waiting(canio_listener_obj_t *self) {
return self->hw->RXFS.bit.F0FL;
}
mp_obj_t common_hal_canio_listener_receive(canio_listener_obj_t *self) {
if (!common_hal_canio_listener_in_waiting(self)) {
uint64_t deadline = supervisor_ticks_ms64() + self->timeout_ms;
do {
if (supervisor_ticks_ms64() > deadline) {
return NULL;
}
RUN_BACKGROUND_TASKS;
// Allow user to break out of a timeout with a KeyboardInterrupt.
if (mp_hal_is_interrupted()) {
return NULL;
}
} while (!common_hal_canio_listener_in_waiting(self));
}
int index = self->hw->RXFS.bit.F0GI;
canio_can_rx_fifo_t *hw_message = &self->fifo[index];
bool rtr = hw_message->rxf0.bit.RTR;
canio_message_obj_t *message = m_new_obj(canio_message_obj_t);
message->base.type = rtr ? &canio_remote_transmission_request_type : &canio_message_type;
message->extended = hw_message->rxf0.bit.XTD;
if (message->extended) {
message->id = hw_message->rxf0.bit.ID;
} else {
message->id = hw_message->rxf0.bit.ID >> 18; // short ids are left-justified
}
message->size = hw_message->rxf1.bit.DLC;
if (!rtr) {
memcpy(message->data, hw_message->data, message->size);
}
self->hw->RXFA.bit.F0AI = index;
return message;
}
void common_hal_canio_listener_deinit(canio_listener_obj_t *self) {
if (self->can) {
clear_filters(self);
if (self->fifo_idx == 0) {
self->can->fifo0_in_use = false;
}
if (self->fifo_idx == 1) {
self->can->fifo1_in_use = false;
}
}
self->fifo_idx = -1;
self->fifo = NULL;
self->can = NULL;
self->hw = NULL;
}