circuitpython/atmel-samd/spi_flash.c

643 lines
23 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "spi_flash.h"
#include <stdint.h>
#include <string.h>
#include "asf/sam0/drivers/sercom/spi/spi.h"
#include "py/gc.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "lib/fatfs/ff.h"
#include "extmod/fsusermount.h"
#include "rgb_led_status.h"
#define SPI_FLASH_PART1_START_BLOCK (0x1)
#define NO_SECTOR_LOADED 0xFFFFFFFF
#define CMD_READ_JEDEC_ID 0x9f
#define CMD_READ_DATA 0x03
#define CMD_SECTOR_ERASE 0x20
// #define CMD_SECTOR_ERASE CMD_READ_JEDEC_ID
#define CMD_ENABLE_WRITE 0x06
#define CMD_PAGE_PROGRAM 0x02
// #define CMD_PAGE_PROGRAM CMD_READ_JEDEC_ID
#define CMD_READ_STATUS 0x05
static bool spi_flash_is_initialised = false;
struct spi_module spi_flash_instance;
// The total size of the flash.
static uint32_t flash_size;
// The erase sector size.
static uint32_t sector_size;
// The page size. Its the maximum number of bytes that can be written at once.
static uint32_t page_size;
// The currently cached sector in the cache, ram or flash based.
static uint32_t current_sector;
// Track which blocks (up to 32) in the current sector currently live in the
// cache.
static uint32_t dirty_mask;
// Address of the scratch flash sector.
#define SCRATCH_SECTOR (flash_size - sector_size)
// Enable the flash over SPI.
static void flash_enable(void) {
port_pin_set_output_level(SPI_FLASH_CS, false);
}
// Disable the flash over SPI.
static void flash_disable(void) {
port_pin_set_output_level(SPI_FLASH_CS, true);
}
// Wait until both the write enable and write in progress bits have cleared.
static bool wait_for_flash_ready(void) {
uint8_t status_request[2] = {CMD_READ_STATUS, 0x00};
uint8_t response[2] = {0x00, 0x01};
enum status_code status = STATUS_OK;
// Both the write enable and write in progress bits should be low.
while (status == STATUS_OK && ((response[1] & 0x1) == 1 || (response[1] & 0x2) == 2)) {
flash_enable();
status = spi_transceive_buffer_wait(&spi_flash_instance, status_request, response, 2);
flash_disable();
}
return status == STATUS_OK;
}
// Turn on the write enable bit so we can program and erase the flash.
static bool write_enable(void) {
flash_enable();
uint8_t command = CMD_ENABLE_WRITE;
enum status_code status = spi_write_buffer_wait(&spi_flash_instance, &command, 1);
flash_disable();
return status == STATUS_OK;
}
// Pack the low 24 bits of the address into a uint8_t array.
static void address_to_bytes(uint32_t address, uint8_t* bytes) {
bytes[0] = (address >> 16) & 0xff;
bytes[1] = (address >> 8) & 0xff;
bytes[2] = address & 0xff;
}
// Read data_length's worth of bytes starting at address into data.
static bool read_flash(uint32_t address, uint8_t* data, uint32_t data_length) {
wait_for_flash_ready();
enum status_code status;
// We can read as much as we want sequentially.
uint8_t read_request[4] = {CMD_READ_DATA, 0x00, 0x00, 0x00};
address_to_bytes(address, read_request + 1);
flash_enable();
status = spi_write_buffer_wait(&spi_flash_instance, read_request, 4);
if (status == STATUS_OK) {
status = spi_read_buffer_wait(&spi_flash_instance, data, data_length, 0x00);
}
flash_disable();
return status == STATUS_OK;
}
// Writes data_length's worth of bytes starting at address from data. Assumes
// that the sector that address resides in has already been erased. So make sure
// to run erase_sector.
static bool write_flash(uint32_t address, const uint8_t* data, uint32_t data_length) {
if (page_size == 0) {
return false;
}
for (uint32_t bytes_written = 0;
bytes_written < data_length;
bytes_written += page_size) {
if (!wait_for_flash_ready() || !write_enable()) {
return false;
}
flash_enable();
uint8_t command[4] = {CMD_PAGE_PROGRAM, 0x00, 0x00, 0x00};
address_to_bytes(address + bytes_written, command + 1);
enum status_code status;
status = spi_write_buffer_wait(&spi_flash_instance, command, 4);
if (status == STATUS_OK) {
status = spi_write_buffer_wait(&spi_flash_instance, data + bytes_written, page_size);
}
flash_disable();
if (status != STATUS_OK) {
return false;
}
}
return true;
}
// Erases the given sector. Make sure you copied all of the data out of it you
// need! Also note, sector_address is really 24 bits.
static bool erase_sector(uint32_t sector_address) {
// Before we erase the sector we need to wait for any writes to finish and
// and then enable the write again.
if (!wait_for_flash_ready() || !write_enable()) {
return false;
}
uint8_t erase_request[4] = {CMD_SECTOR_ERASE, 0x00, 0x00, 0x00};
address_to_bytes(sector_address, erase_request + 1);
flash_enable();
enum status_code status = spi_write_buffer_wait(&spi_flash_instance, erase_request, 4);
flash_disable();
return status == STATUS_OK;
}
// Sector is really 24 bits.
static bool copy_block(uint32_t src_address, uint32_t dest_address) {
// Copy page by page to minimize RAM buffer.
uint8_t buffer[page_size];
for (uint32_t i = 0; i < FLASH_BLOCK_SIZE / page_size; i++) {
if (!read_flash(src_address + i * page_size, buffer, page_size)) {
return false;
}
if (!write_flash(dest_address + i * page_size, buffer, page_size)) {
return false;
}
}
return true;
}
void spi_flash_init(void) {
if (!spi_flash_is_initialised) {
struct spi_config config_spi_master;
spi_get_config_defaults(&config_spi_master);
config_spi_master.mux_setting = SPI_FLASH_MUX_SETTING;
config_spi_master.pinmux_pad0 = SPI_FLASH_PAD0_PINMUX;
config_spi_master.pinmux_pad1 = SPI_FLASH_PAD1_PINMUX;
config_spi_master.pinmux_pad2 = SPI_FLASH_PAD2_PINMUX;
config_spi_master.pinmux_pad3 = SPI_FLASH_PAD3_PINMUX;
config_spi_master.mode_specific.master.baudrate = SPI_FLASH_BAUDRATE;
spi_init(&spi_flash_instance, SPI_FLASH_SERCOM, &config_spi_master);
spi_enable(&spi_flash_instance);
// Manage chip select ourselves.
struct port_config pin_conf;
port_get_config_defaults(&pin_conf);
pin_conf.direction = PORT_PIN_DIR_OUTPUT;
port_pin_set_config(SPI_FLASH_CS, &pin_conf);
flash_disable();
// Activity LED for flash writes.
#ifdef MICROPY_HW_LED_MSC
port_pin_set_config(MICROPY_HW_LED_MSC, &pin_conf);
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif
uint8_t jedec_id_request[4] = {CMD_READ_JEDEC_ID, 0x00, 0x00, 0x00};
uint8_t response[4] = {0x00, 0x00, 0x00, 0x00};
flash_enable();
volatile enum status_code status = spi_transceive_buffer_wait(&spi_flash_instance, jedec_id_request, response, 4);
flash_disable();
(void) status;
if (response[1] == 0x01 && response[2] == 0x40 && response[3] == 0x15) {
flash_size = 1 << 21; // 2 MiB
sector_size = 1 << 12; // 4 KiB
page_size = 256; // 256 bytes
} else {
// Unknown flash chip!
flash_size = 0;
}
current_sector = NO_SECTOR_LOADED;
dirty_mask = 0;
MP_STATE_VM(flash_ram_cache) = NULL;
spi_flash_is_initialised = true;
}
}
// The size of each individual block.
uint32_t spi_flash_get_block_size(void) {
return FLASH_BLOCK_SIZE;
}
// The total number of available blocks.
uint32_t spi_flash_get_block_count(void) {
// We subtract one erase sector size because we may use it as a staging area
// for writes.
return SPI_FLASH_PART1_START_BLOCK + (flash_size - sector_size) / FLASH_BLOCK_SIZE;
}
// Flush the cache that was written to the scratch portion of flash. Only used
// when ram is tight.
static bool flush_scratch_flash(void) {
// First, copy out any blocks that we haven't touched from the sector we've
// cached.
bool copy_to_scratch_ok = true;
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
copy_to_scratch_ok = copy_to_scratch_ok &&
copy_block(current_sector + i * FLASH_BLOCK_SIZE,
SCRATCH_SECTOR + i * FLASH_BLOCK_SIZE);
}
}
if (!copy_to_scratch_ok) {
// TODO(tannewt): Do more here. We opted to not erase and copy bad data
// in. We still risk losing the data written to the scratch sector.
return false;
}
// Second, erase the current sector.
erase_sector(current_sector);
// Finally, copy the new version into it.
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
copy_block(SCRATCH_SECTOR + i * FLASH_BLOCK_SIZE,
current_sector + i * FLASH_BLOCK_SIZE);
}
return true;
}
// Attempts to allocate a new set of page buffers for caching a full sector in
// ram. Each page is allocated separately so that the GC doesn't need to provide
// one huge block. We can free it as we write if we want to also.
static bool allocate_ram_cache(void) {
uint8_t blocks_per_sector = sector_size / FLASH_BLOCK_SIZE;
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
MP_STATE_VM(flash_ram_cache) = gc_alloc(blocks_per_sector * pages_per_block * sizeof(uint32_t), false);
if (MP_STATE_VM(flash_ram_cache) == NULL) {
return false;
}
// Declare i and j outside the loops in case we fail to allocate everything
// we need. In that case we'll give it back.
uint8_t i = 0;
uint8_t j = 0;
bool success = true;
for (i = 0; i < blocks_per_sector; i++) {
for (j = 0; j < pages_per_block; j++) {
uint8_t *page_cache = gc_alloc(page_size, false);
if (page_cache == NULL) {
success = false;
break;
}
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j] = page_cache;
}
if (!success) {
break;
}
}
// We couldn't allocate enough so give back what we got.
if (!success) {
// We add 1 so that we delete 0 when i is 1. Going to zero (i >= 0)
// would never stop because i is unsigned.
i++;
for (; i > 0; i--) {
for (; j > 0; j--) {
gc_free(MP_STATE_VM(flash_ram_cache)[(i - 1) * pages_per_block + (j - 1)]);
}
j = pages_per_block;
}
gc_free(MP_STATE_VM(flash_ram_cache));
MP_STATE_VM(flash_ram_cache) = NULL;
}
return success;
}
// Flush the cached sector from ram onto the flash. We'll free the cache unless
// keep_cache is true.
static bool flush_ram_cache(bool keep_cache) {
// First, copy out any blocks that we haven't touched from the sector
// we've cached. If we don't do this we'll erase the data during the sector
// erase below.
bool copy_to_ram_ok = true;
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
if ((dirty_mask & (1 << i)) == 0) {
for (uint8_t j = 0; j < pages_per_block; j++) {
copy_to_ram_ok = read_flash(
current_sector + (i * pages_per_block + j) * page_size,
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
page_size);
if (!copy_to_ram_ok) {
break;
}
}
}
if (!copy_to_ram_ok) {
break;
}
}
if (!copy_to_ram_ok) {
return false;
}
// Second, erase the current sector.
erase_sector(current_sector);
// Lastly, write all the data in ram that we've cached.
for (uint8_t i = 0; i < sector_size / FLASH_BLOCK_SIZE; i++) {
for (uint8_t j = 0; j < pages_per_block; j++) {
write_flash(current_sector + (i * pages_per_block + j) * page_size,
MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j],
page_size);
if (!keep_cache) {
gc_free(MP_STATE_VM(flash_ram_cache)[i * pages_per_block + j]);
}
}
}
// We're done with the cache for now so give it back.
if (!keep_cache) {
gc_free(MP_STATE_VM(flash_ram_cache));
MP_STATE_VM(flash_ram_cache) = NULL;
}
return true;
}
// Delegates to the correct flash flush method depending on the existing cache.
static void spi_flash_flush_keep_cache(bool keep_cache) {
if (current_sector == NO_SECTOR_LOADED) {
return;
}
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, true);
#endif
temp_status_color(ACTIVE_WRITE);
// If we've cached to the flash itself flush from there.
if (MP_STATE_VM(flash_ram_cache) == NULL) {
flush_scratch_flash();
} else {
flush_ram_cache(keep_cache);
}
current_sector = NO_SECTOR_LOADED;
clear_temp_status();
#ifdef MICROPY_HW_LED_MSC
port_pin_set_output_level(MICROPY_HW_LED_MSC, false);
#endif
}
// External flash function used. If called externally we assume we won't need
// the cache after.
void spi_flash_flush(void) {
spi_flash_flush_keep_cache(false);
}
// Builds a partition entry for the MBR.
static void build_partition(uint8_t *buf, int boot, int type,
uint32_t start_block, uint32_t num_blocks) {
buf[0] = boot;
if (num_blocks == 0) {
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
} else {
buf[1] = 0xff;
buf[2] = 0xff;
buf[3] = 0xff;
}
buf[4] = type;
if (num_blocks == 0) {
buf[5] = 0;
buf[6] = 0;
buf[7] = 0;
} else {
buf[5] = 0xff;
buf[6] = 0xff;
buf[7] = 0xff;
}
buf[8] = start_block;
buf[9] = start_block >> 8;
buf[10] = start_block >> 16;
buf[11] = start_block >> 24;
buf[12] = num_blocks;
buf[13] = num_blocks >> 8;
buf[14] = num_blocks >> 16;
buf[15] = num_blocks >> 24;
}
static int32_t convert_block_to_flash_addr(uint32_t block) {
if (SPI_FLASH_PART1_START_BLOCK <= block && block < spi_flash_get_block_count()) {
// a block in partition 1
block -= SPI_FLASH_PART1_START_BLOCK;
return block * FLASH_BLOCK_SIZE;
}
// bad block
return -1;
}
bool spi_flash_read_block(uint8_t *dest, uint32_t block) {
if (block == 0) {
// Fake the MBR so we can decide on our own partition table
for (int i = 0; i < 446; i++) {
dest[i] = 0;
}
build_partition(dest + 446, 0, 0x01 /* FAT12 */,
SPI_FLASH_PART1_START_BLOCK,
spi_flash_get_block_count() - SPI_FLASH_PART1_START_BLOCK);
build_partition(dest + 462, 0, 0, 0, 0);
build_partition(dest + 478, 0, 0, 0, 0);
build_partition(dest + 494, 0, 0, 0, 0);
dest[510] = 0x55;
dest[511] = 0xaa;
return true;
} else if (block < SPI_FLASH_PART1_START_BLOCK) {
memset(dest, 0, FLASH_BLOCK_SIZE);
return true;
} else {
// Non-MBR block, get data from flash memory.
int32_t address = convert_block_to_flash_addr(block);
if (address == -1) {
// bad block number
return false;
}
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(sector_size - 1));
uint8_t block_index = (address / FLASH_BLOCK_SIZE) % (sector_size / FLASH_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// We're reading from the currently cached sector.
if (current_sector == this_sector && (mask & dirty_mask) > 0) {
if (MP_STATE_VM(flash_ram_cache) != NULL) {
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (int i = 0; i < pages_per_block; i++) {
memcpy(dest + i * page_size,
MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
page_size);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FLASH_BLOCK_SIZE;
return read_flash(scratch_address, dest, FLASH_BLOCK_SIZE);
}
}
return read_flash(address, dest, FLASH_BLOCK_SIZE);
}
}
bool spi_flash_write_block(const uint8_t *data, uint32_t block) {
if (block < SPI_FLASH_PART1_START_BLOCK) {
// Fake writing below the flash partition.
return true;
} else {
// Non-MBR block, copy to cache
int32_t address = convert_block_to_flash_addr(block);
if (address == -1) {
// bad block number
return false;
}
// Wait for any previous writes to finish.
wait_for_flash_ready();
// Mask out the lower bits that designate the address within the sector.
uint32_t this_sector = address & (~(sector_size - 1));
uint8_t block_index = (address / FLASH_BLOCK_SIZE) % (sector_size / FLASH_BLOCK_SIZE);
uint8_t mask = 1 << (block_index);
// Flush the cache if we're moving onto a sector our we're writing the
// same block again.
if (current_sector != this_sector || (mask & dirty_mask) > 0) {
if (current_sector != NO_SECTOR_LOADED) {
spi_flash_flush_keep_cache(true);
}
if (MP_STATE_VM(flash_ram_cache) == NULL && !allocate_ram_cache()) {
erase_sector(SCRATCH_SECTOR);
wait_for_flash_ready();
}
current_sector = this_sector;
dirty_mask = 0;
}
dirty_mask |= mask;
// Copy the block to the appropriate cache.
if (MP_STATE_VM(flash_ram_cache) != NULL) {
uint8_t pages_per_block = FLASH_BLOCK_SIZE / page_size;
for (int i = 0; i < pages_per_block; i++) {
memcpy(MP_STATE_VM(flash_ram_cache)[block_index * pages_per_block + i],
data + i * page_size,
page_size);
}
return true;
} else {
uint32_t scratch_address = SCRATCH_SECTOR + block_index * FLASH_BLOCK_SIZE;
return write_flash(scratch_address, data, FLASH_BLOCK_SIZE);
}
}
}
mp_uint_t spi_flash_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_read_block(dest + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
mp_uint_t spi_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
for (size_t i = 0; i < num_blocks; i++) {
if (!spi_flash_write_block(src + i * FLASH_BLOCK_SIZE, block_num + i)) {
return 1; // error
}
}
return 0; // success
}
/******************************************************************************/
// MicroPython bindings
//
// Expose the flash as an object with the block protocol.
// there is a singleton Flash object
STATIC const mp_obj_base_t spi_flash_obj = {&spi_flash_type};
STATIC mp_obj_t spi_flash_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// return singleton object
return (mp_obj_t)&spi_flash_obj;
}
STATIC mp_obj_t spi_flash_obj_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
mp_uint_t ret = spi_flash_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_readblocks_obj, spi_flash_obj_readblocks);
STATIC mp_obj_t spi_flash_obj_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
mp_uint_t ret = spi_flash_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / FLASH_BLOCK_SIZE);
return MP_OBJ_NEW_SMALL_INT(ret);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_writeblocks_obj, spi_flash_obj_writeblocks);
STATIC mp_obj_t spi_flash_obj_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case BP_IOCTL_INIT: spi_flash_init(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_DEINIT: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0); // TODO properly
case BP_IOCTL_SYNC: spi_flash_flush(); return MP_OBJ_NEW_SMALL_INT(0);
case BP_IOCTL_SEC_COUNT: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_count());
case BP_IOCTL_SEC_SIZE: return MP_OBJ_NEW_SMALL_INT(spi_flash_get_block_size());
default: return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(spi_flash_obj_ioctl_obj, spi_flash_obj_ioctl);
STATIC const mp_map_elem_t spi_flash_obj_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_readblocks), (mp_obj_t)&spi_flash_obj_readblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_writeblocks), (mp_obj_t)&spi_flash_obj_writeblocks_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ioctl), (mp_obj_t)&spi_flash_obj_ioctl_obj },
};
STATIC MP_DEFINE_CONST_DICT(spi_flash_obj_locals_dict, spi_flash_obj_locals_dict_table);
const mp_obj_type_t spi_flash_type = {
{ &mp_type_type },
.name = MP_QSTR_SPIFlash,
.make_new = spi_flash_obj_make_new,
.locals_dict = (mp_obj_t)&spi_flash_obj_locals_dict,
};
void flash_init_vfs(fs_user_mount_t *vfs) {
vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL | FSUSER_USB_WRITEABLE;
vfs->readblocks[0] = (mp_obj_t)&spi_flash_obj_readblocks_obj;
vfs->readblocks[1] = (mp_obj_t)&spi_flash_obj;
vfs->readblocks[2] = (mp_obj_t)spi_flash_read_blocks; // native version
vfs->writeblocks[0] = (mp_obj_t)&spi_flash_obj_writeblocks_obj;
vfs->writeblocks[1] = (mp_obj_t)&spi_flash_obj;
vfs->writeblocks[2] = (mp_obj_t)spi_flash_write_blocks; // native version
vfs->u.ioctl[0] = (mp_obj_t)&spi_flash_obj_ioctl_obj;
vfs->u.ioctl[1] = (mp_obj_t)&spi_flash_obj;
}