circuitpython/py/runtime.c

1176 lines
43 KiB
C

// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args
// mp_xxx functions are safer and can be called by anyone
// note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "parsenum.h"
#include "runtime0.h"
#include "runtime.h"
#include "map.h"
#include "builtin.h"
#include "objarray.h"
#include "bc.h"
#include "intdivmod.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define WRITE_CODE (1)
#define DEBUG_printf DEBUG_printf
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#define DEBUG_OP_printf(...) (void)0
#endif
// locals and globals need to be pointers because they can be the same in outer module scope
STATIC mp_map_t *map_locals;
STATIC mp_map_t *map_globals;
STATIC mp_map_t map_builtins;
STATIC mp_map_t map_loaded_modules; // TODO: expose as sys.modules
typedef enum {
MP_CODE_NONE,
MP_CODE_BYTE,
MP_CODE_NATIVE,
MP_CODE_INLINE_ASM,
} mp_code_kind_t;
typedef struct _mp_code_t {
mp_code_kind_t kind : 8;
uint scope_flags : 8;
uint n_args : 16;
uint n_state : 16;
union {
struct {
byte *code;
uint len;
} u_byte;
struct {
mp_fun_t fun;
} u_native;
struct {
void *fun;
} u_inline_asm;
};
qstr *arg_names;
} mp_code_t;
STATIC uint next_unique_code_id;
STATIC machine_uint_t unique_codes_alloc = 0;
STATIC mp_code_t *unique_codes = NULL;
#ifdef WRITE_CODE
FILE *fp_write_code = NULL;
#endif
// builtins
// we put this table in ROM because it's always needed and takes up quite a bit of room in RAM
// in fact, it uses less ROM here in table form than the equivalent in code form initialising a dynamic mp_map_t object in RAM
// at the moment it's a linear table, but we could convert it to a const mp_map_t table with a simple preprocessing script
// if we wanted to allow dynamic modification of the builtins, we could provide an mp_map_t object which is searched before this one
typedef struct _mp_builtin_elem_t {
qstr qstr;
mp_obj_t fun;
} mp_builtin_elem_t;
STATIC const mp_builtin_elem_t builtin_table[] = {
// built-in core functions
{ MP_QSTR___build_class__, (mp_obj_t)&mp_builtin___build_class___obj },
{ MP_QSTR___import__, (mp_obj_t)&mp_builtin___import___obj },
{ MP_QSTR___repl_print__, (mp_obj_t)&mp_builtin___repl_print___obj },
// built-in types
{ MP_QSTR_bool, (mp_obj_t)&bool_type },
{ MP_QSTR_bytes, (mp_obj_t)&bytes_type },
#if MICROPY_ENABLE_FLOAT
{ MP_QSTR_complex, (mp_obj_t)&mp_type_complex },
#endif
{ MP_QSTR_dict, (mp_obj_t)&dict_type },
{ MP_QSTR_enumerate, (mp_obj_t)&enumerate_type },
{ MP_QSTR_filter, (mp_obj_t)&filter_type },
#if MICROPY_ENABLE_FLOAT
{ MP_QSTR_float, (mp_obj_t)&mp_type_float },
#endif
{ MP_QSTR_int, (mp_obj_t)&int_type },
{ MP_QSTR_list, (mp_obj_t)&list_type },
{ MP_QSTR_map, (mp_obj_t)&map_type },
{ MP_QSTR_object, (mp_obj_t)&mp_type_object },
{ MP_QSTR_set, (mp_obj_t)&set_type },
{ MP_QSTR_str, (mp_obj_t)&str_type },
{ MP_QSTR_super, (mp_obj_t)&super_type },
{ MP_QSTR_tuple, (mp_obj_t)&tuple_type },
{ MP_QSTR_type, (mp_obj_t)&mp_type_type },
{ MP_QSTR_zip, (mp_obj_t)&zip_type },
{ MP_QSTR_classmethod, (mp_obj_t)&mp_type_classmethod },
{ MP_QSTR_staticmethod, (mp_obj_t)&mp_type_staticmethod },
// built-in user functions
{ MP_QSTR_abs, (mp_obj_t)&mp_builtin_abs_obj },
{ MP_QSTR_all, (mp_obj_t)&mp_builtin_all_obj },
{ MP_QSTR_any, (mp_obj_t)&mp_builtin_any_obj },
{ MP_QSTR_callable, (mp_obj_t)&mp_builtin_callable_obj },
{ MP_QSTR_chr, (mp_obj_t)&mp_builtin_chr_obj },
{ MP_QSTR_dir, (mp_obj_t)&mp_builtin_dir_obj },
{ MP_QSTR_divmod, (mp_obj_t)&mp_builtin_divmod_obj },
{ MP_QSTR_eval, (mp_obj_t)&mp_builtin_eval_obj },
{ MP_QSTR_exec, (mp_obj_t)&mp_builtin_exec_obj },
{ MP_QSTR_hash, (mp_obj_t)&mp_builtin_hash_obj },
{ MP_QSTR_id, (mp_obj_t)&mp_builtin_id_obj },
{ MP_QSTR_isinstance, (mp_obj_t)&mp_builtin_isinstance_obj },
{ MP_QSTR_issubclass, (mp_obj_t)&mp_builtin_issubclass_obj },
{ MP_QSTR_iter, (mp_obj_t)&mp_builtin_iter_obj },
{ MP_QSTR_len, (mp_obj_t)&mp_builtin_len_obj },
{ MP_QSTR_max, (mp_obj_t)&mp_builtin_max_obj },
{ MP_QSTR_min, (mp_obj_t)&mp_builtin_min_obj },
{ MP_QSTR_next, (mp_obj_t)&mp_builtin_next_obj },
{ MP_QSTR_ord, (mp_obj_t)&mp_builtin_ord_obj },
{ MP_QSTR_pow, (mp_obj_t)&mp_builtin_pow_obj },
{ MP_QSTR_print, (mp_obj_t)&mp_builtin_print_obj },
{ MP_QSTR_range, (mp_obj_t)&mp_builtin_range_obj },
{ MP_QSTR_repr, (mp_obj_t)&mp_builtin_repr_obj },
{ MP_QSTR_sorted, (mp_obj_t)&mp_builtin_sorted_obj },
{ MP_QSTR_sum, (mp_obj_t)&mp_builtin_sum_obj },
{ MP_QSTR_bytearray, (mp_obj_t)&mp_builtin_bytearray_obj },
// built-in exceptions
{ MP_QSTR_BaseException, (mp_obj_t)&mp_type_BaseException },
{ MP_QSTR_ArithmeticError, (mp_obj_t)&mp_type_ArithmeticError },
{ MP_QSTR_AssertionError, (mp_obj_t)&mp_type_AssertionError },
{ MP_QSTR_AttributeError, (mp_obj_t)&mp_type_AttributeError },
{ MP_QSTR_BufferError, (mp_obj_t)&mp_type_BufferError },
{ MP_QSTR_EOFError, (mp_obj_t)&mp_type_EOFError },
{ MP_QSTR_EnvironmentError, (mp_obj_t)&mp_type_EnvironmentError },
{ MP_QSTR_Exception, (mp_obj_t)&mp_type_Exception },
{ MP_QSTR_FloatingPointError, (mp_obj_t)&mp_type_FloatingPointError },
{ MP_QSTR_GeneratorExit, (mp_obj_t)&mp_type_GeneratorExit },
{ MP_QSTR_IOError, (mp_obj_t)&mp_type_IOError },
{ MP_QSTR_ImportError, (mp_obj_t)&mp_type_ImportError },
{ MP_QSTR_IndentationError, (mp_obj_t)&mp_type_IndentationError },
{ MP_QSTR_IndexError, (mp_obj_t)&mp_type_IndexError },
{ MP_QSTR_KeyError, (mp_obj_t)&mp_type_KeyError },
{ MP_QSTR_LookupError, (mp_obj_t)&mp_type_LookupError },
{ MP_QSTR_MemoryError, (mp_obj_t)&mp_type_MemoryError },
{ MP_QSTR_NameError, (mp_obj_t)&mp_type_NameError },
{ MP_QSTR_NotImplementedError, (mp_obj_t)&mp_type_NotImplementedError },
{ MP_QSTR_OSError, (mp_obj_t)&mp_type_OSError },
{ MP_QSTR_OverflowError, (mp_obj_t)&mp_type_OverflowError },
{ MP_QSTR_ReferenceError, (mp_obj_t)&mp_type_ReferenceError },
{ MP_QSTR_RuntimeError, (mp_obj_t)&mp_type_RuntimeError },
{ MP_QSTR_SyntaxError, (mp_obj_t)&mp_type_SyntaxError },
{ MP_QSTR_SystemError, (mp_obj_t)&mp_type_SystemError },
{ MP_QSTR_SystemExit, (mp_obj_t)&mp_type_SystemExit },
{ MP_QSTR_TabError, (mp_obj_t)&mp_type_TabError },
{ MP_QSTR_TypeError, (mp_obj_t)&mp_type_TypeError },
{ MP_QSTR_UnboundLocalError, (mp_obj_t)&mp_type_UnboundLocalError },
{ MP_QSTR_ValueError, (mp_obj_t)&mp_type_ValueError },
{ MP_QSTR_ZeroDivisionError, (mp_obj_t)&mp_type_ZeroDivisionError },
{ MP_QSTR_StopIteration, (mp_obj_t)&mp_type_StopIteration },
// Somehow CPython managed to have OverflowError not inherit from ValueError ;-/
// TODO: For MICROPY_CPYTHON_COMPAT==0 use ValueError to avoid exc proliferation
// Extra builtins as defined by a port
MICROPY_EXTRA_BUILTINS
{ MP_QSTR_, MP_OBJ_NULL }, // end of list sentinel
};
// a good optimising compiler will inline this if necessary
STATIC void mp_map_add_qstr(mp_map_t *map, qstr qstr, mp_obj_t value) {
mp_map_lookup(map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
}
void rt_init(void) {
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
map_locals = map_globals = mp_map_new(1);
mp_map_add_qstr(map_globals, MP_QSTR___name__, MP_OBJ_NEW_QSTR(MP_QSTR___main__));
// init built-in hash table
mp_map_init(&map_builtins, 3);
// init loaded modules table
mp_map_init(&map_loaded_modules, 3);
// built-in objects
mp_map_add_qstr(&map_builtins, MP_QSTR_Ellipsis, mp_const_ellipsis);
mp_obj_t m_array = mp_obj_new_module(MP_QSTR_array);
rt_store_attr(m_array, MP_QSTR_array, (mp_obj_t)&array_type);
mp_obj_t m_collections = mp_obj_new_module(MP_QSTR_collections);
rt_store_attr(m_collections, MP_QSTR_namedtuple, (mp_obj_t)&mp_namedtuple_obj);
#if MICROPY_CPYTHON_COMPAT
// Precreate sys module, so "import sys" didn't throw exceptions.
mp_obj_t m_sys = mp_obj_new_module(MP_QSTR_sys);
// Avoid warning of unused var
(void)m_sys;
#endif
// init sys.path
// for efficiency, left to platform-specific startup code
//sys_path = mp_obj_new_list(0, NULL);
//rt_store_attr(m_sys, MP_QSTR_path, sys_path);
// we pre-import the micropython module
// probably shouldn't do this, so we are compatible with CPython
rt_store_name(MP_QSTR_micropython, (mp_obj_t)&mp_module_micropython);
// TODO: wastes one mp_code_t structure in mem
next_unique_code_id = 1; // 0 indicates "no code"
unique_codes_alloc = 0;
unique_codes = NULL;
#ifdef WRITE_CODE
fp_write_code = fopen("out-code", "wb");
#endif
}
void rt_deinit(void) {
m_del(mp_code_t, unique_codes, unique_codes_alloc);
mp_map_free(map_globals);
mp_map_deinit(&map_loaded_modules);
mp_map_deinit(&map_builtins);
#ifdef WRITE_CODE
if (fp_write_code != NULL) {
fclose(fp_write_code);
}
#endif
}
uint rt_get_unique_code_id(void) {
return next_unique_code_id++;
}
STATIC void alloc_unique_codes(void) {
if (next_unique_code_id > unique_codes_alloc) {
DEBUG_printf("allocate more unique codes: " UINT_FMT " -> %u\n", unique_codes_alloc, next_unique_code_id);
// increase size of unique_codes table
unique_codes = m_renew(mp_code_t, unique_codes, unique_codes_alloc, next_unique_code_id);
for (uint i = unique_codes_alloc; i < next_unique_code_id; i++) {
unique_codes[i].kind = MP_CODE_NONE;
}
unique_codes_alloc = next_unique_code_id;
}
}
void rt_assign_byte_code(uint unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_stack, uint scope_flags, qstr *arg_names) {
alloc_unique_codes();
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
unique_codes[unique_code_id].kind = MP_CODE_BYTE;
unique_codes[unique_code_id].scope_flags = scope_flags;
unique_codes[unique_code_id].n_args = n_args;
unique_codes[unique_code_id].n_state = n_locals + n_stack;
unique_codes[unique_code_id].u_byte.code = code;
unique_codes[unique_code_id].u_byte.len = len;
unique_codes[unique_code_id].arg_names = arg_names;
//printf("byte code: %d bytes\n", len);
#ifdef DEBUG_PRINT
DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d n_locals=%d n_stack=%d\n", unique_code_id, code, len, n_args, n_locals, n_stack);
for (int i = 0; i < 128 && i < len; i++) {
if (i > 0 && i % 16 == 0) {
DEBUG_printf("\n");
}
DEBUG_printf(" %02x", code[i]);
}
DEBUG_printf("\n");
#if MICROPY_DEBUG_PRINTERS
mp_byte_code_print(code, len);
#endif
#endif
}
void rt_assign_native_code(uint unique_code_id, void *fun, uint len, int n_args) {
alloc_unique_codes();
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
unique_codes[unique_code_id].kind = MP_CODE_NATIVE;
unique_codes[unique_code_id].scope_flags = 0;
unique_codes[unique_code_id].n_args = n_args;
unique_codes[unique_code_id].n_state = 0;
unique_codes[unique_code_id].u_native.fun = fun;
//printf("native code: %d bytes\n", len);
#ifdef DEBUG_PRINT
DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
for (int i = 0; i < 128 && i < len; i++) {
if (i > 0 && i % 16 == 0) {
DEBUG_printf("\n");
}
DEBUG_printf(" %02x", fun_data[i]);
}
DEBUG_printf("\n");
#ifdef WRITE_CODE
if (fp_write_code != NULL) {
fwrite(fun_data, len, 1, fp_write_code);
fflush(fp_write_code);
}
#endif
#endif
}
void rt_assign_inline_asm_code(uint unique_code_id, void *fun, uint len, int n_args) {
alloc_unique_codes();
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
unique_codes[unique_code_id].kind = MP_CODE_INLINE_ASM;
unique_codes[unique_code_id].scope_flags = 0;
unique_codes[unique_code_id].n_args = n_args;
unique_codes[unique_code_id].n_state = 0;
unique_codes[unique_code_id].u_inline_asm.fun = fun;
#ifdef DEBUG_PRINT
DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
for (int i = 0; i < 128 && i < len; i++) {
if (i > 0 && i % 16 == 0) {
DEBUG_printf("\n");
}
DEBUG_printf(" %02x", fun_data[i]);
}
DEBUG_printf("\n");
#ifdef WRITE_CODE
if (fp_write_code != NULL) {
fwrite(fun_data, len, 1, fp_write_code);
}
#endif
#endif
}
int rt_is_true(mp_obj_t arg) {
DEBUG_OP_printf("is true %p\n", arg);
if (arg == mp_const_false) {
return 0;
} else if (arg == mp_const_true) {
return 1;
} else if (arg == mp_const_none) {
return 0;
} else if (MP_OBJ_IS_SMALL_INT(arg)) {
if (MP_OBJ_SMALL_INT_VALUE(arg) == 0) {
return 0;
} else {
return 1;
}
} else {
mp_obj_type_t *type = mp_obj_get_type(arg);
if (type->unary_op != NULL) {
mp_obj_t result = type->unary_op(RT_UNARY_OP_BOOL, arg);
if (result != MP_OBJ_NULL) {
return result == mp_const_true;
}
}
mp_obj_t len = mp_obj_len_maybe(arg);
if (len != MP_OBJ_NULL) {
// obj has a length, truth determined if len != 0
return len != MP_OBJ_NEW_SMALL_INT(0);
} else {
// any other obj is true per Python semantics
return 1;
}
}
}
mp_obj_t rt_list_append(mp_obj_t self_in, mp_obj_t arg) {
return mp_obj_list_append(self_in, arg);
}
mp_obj_t rt_load_const_dec(qstr qstr) {
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
uint len;
const byte* data = qstr_data(qstr, &len);
return mp_parse_num_decimal((const char*)data, len, true, false);
}
mp_obj_t rt_load_const_str(qstr qstr) {
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
return MP_OBJ_NEW_QSTR(qstr);
}
mp_obj_t rt_load_const_bytes(qstr qstr) {
DEBUG_OP_printf("load b'%s'\n", qstr_str(qstr));
uint len;
const byte *data = qstr_data(qstr, &len);
return mp_obj_new_bytes(data, len);
}
mp_obj_t rt_load_name(qstr qstr) {
// logic: search locals, globals, builtins
DEBUG_OP_printf("load name %s\n", qstr_str(qstr));
mp_map_elem_t *elem = mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
} else {
return rt_load_global(qstr);
}
}
mp_obj_t rt_load_global(qstr qstr) {
// logic: search globals, builtins
DEBUG_OP_printf("load global %s\n", qstr_str(qstr));
mp_map_elem_t *elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem == NULL) {
elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
if (elem == NULL) {
for (const mp_builtin_elem_t *e = &builtin_table[0]; e->qstr != MP_QSTR_; e++) {
if (e->qstr == qstr) {
return e->fun;
}
}
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_NameError, "name '%s' is not defined", qstr_str(qstr)));
}
}
return elem->value;
}
mp_obj_t rt_load_build_class(void) {
DEBUG_OP_printf("load_build_class\n");
mp_map_elem_t *elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
} else {
return (mp_obj_t)&mp_builtin___build_class___obj;
}
}
mp_obj_t rt_get_cell(mp_obj_t cell) {
return mp_obj_cell_get(cell);
}
void rt_set_cell(mp_obj_t cell, mp_obj_t val) {
mp_obj_cell_set(cell, val);
}
void rt_store_name(qstr qstr, mp_obj_t obj) {
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj);
mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj;
}
void rt_store_global(qstr qstr, mp_obj_t obj) {
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj);
mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj;
}
mp_obj_t rt_unary_op(int op, mp_obj_t arg) {
DEBUG_OP_printf("unary %d %p\n", op, arg);
if (MP_OBJ_IS_SMALL_INT(arg)) {
mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
switch (op) {
case RT_UNARY_OP_BOOL:
return MP_BOOL(val != 0);
case RT_UNARY_OP_POSITIVE:
return arg;
case RT_UNARY_OP_NEGATIVE:
// check for overflow
if (val == MP_SMALL_INT_MIN) {
return mp_obj_new_int(-val);
} else {
return MP_OBJ_NEW_SMALL_INT(-val);
}
case RT_UNARY_OP_INVERT:
return MP_OBJ_NEW_SMALL_INT(~val);
default:
assert(0);
return arg;
}
} else {
mp_obj_type_t *type = mp_obj_get_type(arg);
if (type->unary_op != NULL) {
mp_obj_t result = type->unary_op(op, arg);
if (result != NULL) {
return result;
}
}
// TODO specify in error message what the operator is
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "bad operand type for unary operator: '%s'", mp_obj_get_type_str(arg)));
}
}
mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs);
// TODO correctly distinguish inplace operators for mutable objects
// lookup logic that CPython uses for +=:
// check for implemented +=
// then check for implemented +
// then check for implemented seq.inplace_concat
// then check for implemented seq.concat
// then fail
// note that list does not implement + or +=, so that inplace_concat is reached first for +=
// deal with is
if (op == RT_BINARY_OP_IS) {
return MP_BOOL(lhs == rhs);
}
// deal with == and != for all types
if (op == RT_BINARY_OP_EQUAL || op == RT_BINARY_OP_NOT_EQUAL) {
if (mp_obj_equal(lhs, rhs)) {
if (op == RT_BINARY_OP_EQUAL) {
return mp_const_true;
} else {
return mp_const_false;
}
} else {
if (op == RT_BINARY_OP_EQUAL) {
return mp_const_false;
} else {
return mp_const_true;
}
}
}
// deal with exception_match for all types
if (op == RT_BINARY_OP_EXCEPTION_MATCH) {
// rhs must be issubclass(rhs, BaseException)
if (mp_obj_is_exception_type(rhs)) {
// if lhs is an instance of an exception, then extract and use its type
if (mp_obj_is_exception_instance(lhs)) {
lhs = mp_obj_get_type(lhs);
}
if (mp_obj_is_subclass_fast(lhs, rhs)) {
return mp_const_true;
} else {
return mp_const_false;
}
}
assert(0);
return mp_const_false;
}
if (MP_OBJ_IS_SMALL_INT(lhs)) {
mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
if (MP_OBJ_IS_SMALL_INT(rhs)) {
mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
// This is a binary operation: lhs_val op rhs_val
// We need to be careful to handle overflow; see CERT INT32-C
// Operations that can overflow:
// + result always fits in machine_int_t, then handled by SMALL_INT check
// - result always fits in machine_int_t, then handled by SMALL_INT check
// * checked explicitly
// / if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
// % if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
// << checked explicitly
switch (op) {
case RT_BINARY_OP_OR:
case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
case RT_BINARY_OP_XOR:
case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
case RT_BINARY_OP_AND:
case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
case RT_BINARY_OP_LSHIFT:
case RT_BINARY_OP_INPLACE_LSHIFT: {
if (rhs_val < 0) {
// negative shift not allowed
nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
} else if (rhs_val >= BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
// left-shift will overflow, so use higher precision integer
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
} else {
// use standard precision
lhs_val <<= rhs_val;
}
break;
}
case RT_BINARY_OP_RSHIFT:
case RT_BINARY_OP_INPLACE_RSHIFT:
if (rhs_val < 0) {
// negative shift not allowed
nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
} else {
// standard precision is enough for right-shift
lhs_val >>= rhs_val;
}
break;
case RT_BINARY_OP_ADD:
case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
case RT_BINARY_OP_SUBTRACT:
case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
case RT_BINARY_OP_MULTIPLY:
case RT_BINARY_OP_INPLACE_MULTIPLY: {
// If long long type exists and is larger than machine_int_t, then
// we can use the following code to perform overflow-checked multiplication.
// Otherwise (eg in x64 case) we must use the branching code below.
#if 0
// compute result using long long precision
long long res = (long long)lhs_val * (long long)rhs_val;
if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
// result overflowed SMALL_INT, so return higher precision integer
return mp_obj_new_int_from_ll(res);
} else {
// use standard precision
lhs_val = (mp_small_int_t)res;
}
#endif
if (lhs_val > 0) { // lhs_val is positive
if (rhs_val > 0) { // lhs_val and rhs_val are positive
if (lhs_val > (MP_SMALL_INT_MAX / rhs_val)) {
goto mul_overflow;
}
} else { // lhs_val positive, rhs_val nonpositive
if (rhs_val < (MP_SMALL_INT_MIN / lhs_val)) {
goto mul_overflow;
}
} // lhs_val positive, rhs_val nonpositive
} else { // lhs_val is nonpositive
if (rhs_val > 0) { // lhs_val is nonpositive, rhs_val is positive
if (lhs_val < (MP_SMALL_INT_MIN / rhs_val)) {
goto mul_overflow;
}
} else { // lhs_val and rhs_val are nonpositive
if (lhs_val != 0 && rhs_val < (MP_SMALL_INT_MAX / lhs_val)) {
goto mul_overflow;
}
} // End if lhs_val and rhs_val are nonpositive
} // End if lhs_val is nonpositive
// use standard precision
return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
mul_overflow:
// use higher precision
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
break;
}
case RT_BINARY_OP_FLOOR_DIVIDE:
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE:
{
lhs_val = python_floor_divide(lhs_val, rhs_val);
break;
}
#if MICROPY_ENABLE_FLOAT
case RT_BINARY_OP_TRUE_DIVIDE:
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
#endif
case RT_BINARY_OP_MODULO:
case RT_BINARY_OP_INPLACE_MODULO:
{
lhs_val = python_modulo(lhs_val, rhs_val);
break;
}
case RT_BINARY_OP_POWER:
case RT_BINARY_OP_INPLACE_POWER:
if (rhs_val < 0) {
#if MICROPY_ENABLE_FLOAT
lhs = mp_obj_new_float(lhs_val);
goto generic_binary_op;
#else
nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative power with no float support"));
#endif
} else {
// TODO check for overflow
machine_int_t ans = 1;
while (rhs_val > 0) {
if (rhs_val & 1) {
ans *= lhs_val;
}
lhs_val *= lhs_val;
rhs_val /= 2;
}
lhs_val = ans;
}
break;
case RT_BINARY_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break;
case RT_BINARY_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break;
case RT_BINARY_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break;
case RT_BINARY_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break;
default: assert(0);
}
// TODO: We just should make mp_obj_new_int() inline and use that
if (MP_OBJ_FITS_SMALL_INT(lhs_val)) {
return MP_OBJ_NEW_SMALL_INT(lhs_val);
} else {
return mp_obj_new_int(lhs_val);
}
#if MICROPY_ENABLE_FLOAT
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_float)) {
return mp_obj_float_binary_op(op, lhs_val, rhs);
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) {
return mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
#endif
}
}
/* deal with `in`
*
* NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
* needs to go below with swapped arguments
*/
if (op == RT_BINARY_OP_IN) {
mp_obj_type_t *type = mp_obj_get_type(rhs);
if (type->binary_op != NULL) {
mp_obj_t res = type->binary_op(op, rhs, lhs);
if (res != MP_OBJ_NULL) {
return res;
}
}
if (type->getiter != NULL) {
/* second attempt, walk the iterator */
mp_obj_t next = NULL;
mp_obj_t iter = rt_getiter(rhs);
while ((next = rt_iternext(iter)) != mp_const_stop_iteration) {
if (mp_obj_equal(next, lhs)) {
return mp_const_true;
}
}
return mp_const_false;
}
nlr_jump(mp_obj_new_exception_msg_varg(
&mp_type_TypeError, "'%s' object is not iterable",
mp_obj_get_type_str(rhs)));
return mp_const_none;
}
// generic binary_op supplied by type
mp_obj_type_t *type;
generic_binary_op:
type = mp_obj_get_type(lhs);
if (type->binary_op != NULL) {
mp_obj_t result = type->binary_op(op, lhs, rhs);
if (result != MP_OBJ_NULL) {
return result;
}
}
// TODO implement dispatch for reverse binary ops
// TODO specify in error message what the operator is
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"unsupported operand types for binary operator: '%s', '%s'",
mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
return mp_const_none;
}
mp_obj_t rt_make_function_from_id(int unique_code_id, mp_obj_t def_args) {
DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id);
if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) {
// illegal code id
return mp_const_none;
}
// make the function, depending on the code kind
mp_code_t *c = &unique_codes[unique_code_id];
mp_obj_t fun;
switch (c->kind) {
case MP_CODE_BYTE:
fun = mp_obj_new_fun_bc(c->scope_flags, c->arg_names, c->n_args, def_args, c->n_state, c->u_byte.code);
break;
case MP_CODE_NATIVE:
fun = rt_make_function_n(c->n_args, c->u_native.fun);
break;
case MP_CODE_INLINE_ASM:
fun = mp_obj_new_fun_asm(c->n_args, c->u_inline_asm.fun);
break;
default:
assert(0);
fun = mp_const_none;
}
// check for generator functions and if so wrap in generator object
if ((c->scope_flags & MP_SCOPE_FLAG_GENERATOR) != 0) {
fun = mp_obj_new_gen_wrap(fun);
}
return fun;
}
mp_obj_t rt_make_closure_from_id(int unique_code_id, mp_obj_t closure_tuple) {
DEBUG_OP_printf("make_closure_from_id %d\n", unique_code_id);
// make function object
mp_obj_t ffun = rt_make_function_from_id(unique_code_id, MP_OBJ_NULL);
// wrap function in closure object
return mp_obj_new_closure(ffun, closure_tuple);
}
mp_obj_t rt_call_function_0(mp_obj_t fun) {
return rt_call_function_n_kw(fun, 0, 0, NULL);
}
mp_obj_t rt_call_function_1(mp_obj_t fun, mp_obj_t arg) {
return rt_call_function_n_kw(fun, 1, 0, &arg);
}
mp_obj_t rt_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
mp_obj_t args[2];
args[0] = arg1;
args[1] = arg2;
return rt_call_function_n_kw(fun, 2, 0, args);
}
// wrapper that accepts n_args and n_kw in one argument
// native emitter can only pass at most 3 arguments to a function
mp_obj_t rt_call_function_n_kw_for_native(mp_obj_t fun_in, uint n_args_kw, const mp_obj_t *args) {
return rt_call_function_n_kw(fun_in, n_args_kw & 0xff, (n_args_kw >> 8) & 0xff, args);
}
// args contains, eg: arg0 arg1 key0 value0 key1 value1
mp_obj_t rt_call_function_n_kw(mp_obj_t fun_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO improve this: fun object can specify its type and we parse here the arguments,
// passing to the function arrays of fixed and keyword arguments
DEBUG_OP_printf("calling function %p(n_args=%d, n_kw=%d, args=%p)\n", fun_in, n_args, n_kw, args);
// get the type
mp_obj_type_t *type = mp_obj_get_type(fun_in);
// do the call
if (type->call != NULL) {
return type->call(fun_in, n_args, n_kw, args);
} else {
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not callable", mp_obj_get_type_str(fun_in)));
}
}
// args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1)
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
mp_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) {
DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p)\n", args[0], args[1], n_args, n_kw, args);
int adjust = (args[1] == NULL) ? 0 : 1;
return rt_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
}
mp_obj_t rt_build_tuple(int n_args, mp_obj_t *items) {
return mp_obj_new_tuple(n_args, items);
}
mp_obj_t rt_build_list(int n_args, mp_obj_t *items) {
return mp_obj_new_list(n_args, items);
}
mp_obj_t rt_build_set(int n_args, mp_obj_t *items) {
return mp_obj_new_set(n_args, items);
}
mp_obj_t rt_store_set(mp_obj_t set, mp_obj_t item) {
mp_obj_set_store(set, item);
return set;
}
// unpacked items are stored in reverse order into the array pointed to by items
void rt_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) {
uint seq_len;
if (MP_OBJ_IS_TYPE(seq_in, &tuple_type) || MP_OBJ_IS_TYPE(seq_in, &list_type)) {
mp_obj_t *seq_items;
if (MP_OBJ_IS_TYPE(seq_in, &tuple_type)) {
mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
} else {
mp_obj_list_get(seq_in, &seq_len, &seq_items);
}
if (seq_len < num) {
goto too_short;
} else if (seq_len > num) {
goto too_long;
}
for (uint i = 0; i < num; i++) {
items[i] = seq_items[num - 1 - i];
}
} else {
mp_obj_t iterable = rt_getiter(seq_in);
for (seq_len = 0; seq_len < num; seq_len++) {
mp_obj_t el = rt_iternext(iterable);
if (el == mp_const_stop_iteration) {
goto too_short;
}
items[num - 1 - seq_len] = el;
}
if (rt_iternext(iterable) != mp_const_stop_iteration) {
goto too_long;
}
}
return;
too_short:
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", seq_len));
too_long:
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "too many values to unpack (expected %d)", num));
}
mp_obj_t rt_build_map(int n_args) {
return mp_obj_new_dict(n_args);
}
mp_obj_t rt_store_map(mp_obj_t map, mp_obj_t key, mp_obj_t value) {
// map should always be a dict
return mp_obj_dict_store(map, key, value);
}
mp_obj_t rt_load_attr(mp_obj_t base, qstr attr) {
DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
// use load_method
mp_obj_t dest[2];
rt_load_method(base, attr, dest);
if (dest[1] == MP_OBJ_NULL) {
// load_method returned just a normal attribute
return dest[0];
} else {
// load_method returned a method, so build a bound method object
return mp_obj_new_bound_meth(dest[0], dest[1]);
}
}
// no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
// method attribute found, returns: dest[0] == <method>, dest[1] == <self>
STATIC void rt_load_method_maybe(mp_obj_t base, qstr attr, mp_obj_t *dest) {
// clear output to indicate no attribute/method found yet
dest[0] = MP_OBJ_NULL;
dest[1] = MP_OBJ_NULL;
// get the type
mp_obj_type_t *type = mp_obj_get_type(base);
// if this type can do its own load, then call it
if (type->load_attr != NULL) {
type->load_attr(base, attr, dest);
}
// if nothing found yet, look for built-in and generic names
if (dest[0] == MP_OBJ_NULL) {
if (attr == MP_QSTR___class__) {
// a.__class__ is equivalent to type(a)
dest[0] = type;
} else if (attr == MP_QSTR___next__ && type->iternext != NULL) {
dest[0] = (mp_obj_t)&mp_builtin_next_obj;
dest[1] = base;
} else if (type->load_attr == NULL) {
// generic method lookup if type didn't provide a specific one
// this is a lookup in the object (ie not class or type)
const mp_method_t *meth = type->methods;
if (meth != NULL) {
for (; meth->name != NULL; meth++) {
if (strcmp(meth->name, qstr_str(attr)) == 0) {
// check if the methods are functions, static or class methods
// see http://docs.python.org/3.3/howto/descriptor.html
if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_static_class_method_t*)meth->fun)->fun;
} else if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_classmethod)) {
// return a bound method, with self being the type of this object
dest[0] = ((mp_obj_static_class_method_t*)meth->fun)->fun;
dest[1] = mp_obj_get_type(base);
} else {
// return a bound method, with self being this object
dest[0] = (mp_obj_t)meth->fun;
dest[1] = base;
}
break;
}
}
}
}
}
}
void rt_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
rt_load_method_maybe(base, attr, dest);
if (dest[0] == MP_OBJ_NULL) {
// no attribute/method called attr
// following CPython, we give a more detailed error message for type objects
if (MP_OBJ_IS_TYPE(base, &mp_type_type)) {
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "type object '%s' has no attribute '%s'", ((mp_obj_type_t*)base)->name, qstr_str(attr)));
} else {
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
}
}
}
void rt_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
mp_obj_type_t *type = mp_obj_get_type(base);
if (type->store_attr != NULL) {
if (type->store_attr(base, attr, value)) {
return;
}
}
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
}
void rt_store_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t value) {
DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value);
if (MP_OBJ_IS_TYPE(base, &list_type)) {
// list store
mp_obj_list_store(base, index, value);
} else if (MP_OBJ_IS_TYPE(base, &dict_type)) {
// dict store
mp_obj_dict_store(base, index, value);
} else {
mp_obj_type_t *type = mp_obj_get_type(base);
if (type->store_item != NULL) {
bool r = type->store_item(base, index, value);
if (r) {
return;
}
// TODO: call base classes here?
}
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object does not support item assignment", mp_obj_get_type_str(base)));
}
}
mp_obj_t rt_getiter(mp_obj_t o_in) {
mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->getiter != NULL) {
return type->getiter(o_in);
} else {
// check for __getitem__ method
mp_obj_t dest[2];
rt_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __getitem__ exists, create an iterator
return mp_obj_new_getitem_iter(dest);
} else {
// object not iterable
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(o_in)));
}
}
}
mp_obj_t rt_iternext(mp_obj_t o_in) {
mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->iternext != NULL) {
return type->iternext(o_in);
} else {
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
}
}
mp_obj_t rt_make_raise_obj(mp_obj_t o) {
DEBUG_printf("raise %p\n", o);
if (mp_obj_is_exception_type(o)) {
// o is an exception type (it is derived from BaseException (or is BaseException))
// create and return a new exception instance by calling o
// TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
// could have const instances in ROM which we return here instead
return rt_call_function_n_kw(o, 0, 0, NULL);
} else if (mp_obj_is_exception_instance(o)) {
// o is an instance of an exception, so use it as the exception
return o;
} else {
// o cannot be used as an exception, so return a type error (which will be raised by the caller)
return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
}
}
mp_obj_t rt_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
DEBUG_printf("import name %s\n", qstr_str(name));
// build args array
mp_obj_t args[5];
args[0] = MP_OBJ_NEW_QSTR(name);
args[1] = mp_const_none; // TODO should be globals
args[2] = mp_const_none; // TODO should be locals
args[3] = fromlist;
args[4] = level; // must be 0; we don't yet support other values
// TODO lookup __import__ and call that instead of going straight to builtin implementation
return mp_builtin___import__(5, args);
}
mp_obj_t rt_import_from(mp_obj_t module, qstr name) {
DEBUG_printf("import from %p %s\n", module, qstr_str(name));
mp_obj_t x = rt_load_attr(module, name);
/* TODO convert AttributeError to ImportError
if (fail) {
(ImportError, "cannot import name %s", qstr_str(name), NULL)
}
*/
return x;
}
void rt_import_all(mp_obj_t module) {
DEBUG_printf("import all %p\n", module);
mp_map_t *map = mp_obj_module_get_globals(module);
for (uint i = 0; i < map->alloc; i++) {
if (map->table[i].key != MP_OBJ_NULL) {
rt_store_name(MP_OBJ_QSTR_VALUE(map->table[i].key), map->table[i].value);
}
}
}
mp_map_t *rt_locals_get(void) {
return map_locals;
}
void rt_locals_set(mp_map_t *m) {
DEBUG_OP_printf("rt_locals_set(%p)\n", m);
map_locals = m;
}
mp_map_t *rt_globals_get(void) {
return map_globals;
}
void rt_globals_set(mp_map_t *m) {
DEBUG_OP_printf("rt_globals_set(%p)\n", m);
map_globals = m;
}
mp_map_t *rt_loaded_modules_get(void) {
return &map_loaded_modules;
}
// these must correspond to the respective enum
void *const rt_fun_table[RT_F_NUMBER_OF] = {
rt_load_const_dec,
rt_load_const_str,
rt_load_name,
rt_load_global,
rt_load_build_class,
rt_load_attr,
rt_load_method,
rt_store_name,
rt_store_attr,
rt_store_subscr,
rt_is_true,
rt_unary_op,
rt_binary_op,
rt_build_tuple,
rt_build_list,
rt_list_append,
rt_build_map,
rt_store_map,
rt_build_set,
rt_store_set,
rt_make_function_from_id,
rt_call_function_n_kw_for_native,
rt_call_method_n_kw,
rt_getiter,
rt_iternext,
};
/*
void rt_f_vector(rt_fun_kind_t fun_kind) {
(rt_f_table[fun_kind])();
}
*/