2022-04-30 15:18:05 -06:00

309 lines
13 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2019 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "shared/runtime/context_manager_helpers.h"
#include "py/objproperty.h"
#include "py/runtime.h"
#include "shared-bindings/audiomp3/MP3Decoder.h"
#include "shared-bindings/util.h"
#include "supervisor/shared/translate.h"
//| class MP3Decoder:
//| """Load a mp3 file for audio playback
//|
//| .. note::
//|
//| ``MP3Decoder`` uses a lot of contiguous memory, so care should be given to
//| optimizing memory usage. More information and recommendations can be found here:
//| https://learn.adafruit.com/Memory-saving-tips-for-CircuitPython/reducing-memory-fragmentation
//| """
//|
//| def __init__(self, file: typing.BinaryIO, buffer: WriteableBuffer) -> None:
//|
//| """Load a .mp3 file for playback with `audioio.AudioOut` or `audiobusio.I2SOut`.
//|
//| :param typing.BinaryIO file: Already opened mp3 file
//| :param ~circuitpython_typing.WriteableBuffer buffer: Optional pre-allocated buffer, that will be split in half and used for double-buffering of the data. If not provided, two buffers are allocated internally. The specific buffer size required depends on the mp3 file.
//|
//| Playback of mp3 audio is CPU intensive, and the
//| exact limit depends on many factors such as the particular
//| microcontroller, SD card or flash performance, and other
//| code in use such as displayio. If playback is garbled,
//| skips, or plays as static, first try using a "simpler" mp3:
//|
//| * Use constant bit rate (CBR) not VBR or ABR (variable or average bit rate) when encoding your mp3 file
//| * Use a lower sample rate (e.g., 11.025kHz instead of 48kHz)
//| * Use a lower bit rate (e.g., 32kbit/s instead of 256kbit/s)
//|
//| Reduce activity taking place at the same time as
//| mp3 playback. For instance, only update small portions of a
//| displayio screen if audio is playing. Disable auto-refresh
//| and explicitly call refresh.
//|
//| Playing a mp3 file from flash::
//|
//| import board
//| import audiomp3
//| import audioio
//| import digitalio
//|
//| # Required for CircuitPlayground Express
//| speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
//| speaker_enable.switch_to_output(value=True)
//|
//| data = open("cplay-16bit-16khz-64kbps.mp3", "rb")
//| mp3 = audiomp3.MP3Decoder(data)
//| a = audioio.AudioOut(board.A0)
//|
//| print("playing")
//| a.play(mp3)
//| while a.playing:
//| pass
//| print("stopped")"""
//| ...
//|
STATIC mp_obj_t audiomp3_mp3file_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 2, false);
audiomp3_mp3file_obj_t *self = m_new_obj(audiomp3_mp3file_obj_t);
self->base.type = &audiomp3_mp3file_type;
if (!mp_obj_is_type(args[0], &mp_type_fileio)) {
mp_raise_TypeError(translate("file must be a file opened in byte mode"));
}
uint8_t *buffer = NULL;
size_t buffer_size = 0;
if (n_args >= 2) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_WRITE);
buffer = bufinfo.buf;
buffer_size = bufinfo.len;
}
common_hal_audiomp3_mp3file_construct(self, MP_OBJ_TO_PTR(args[0]),
buffer, buffer_size);
return MP_OBJ_FROM_PTR(self);
}
//| def deinit(self) -> None:
//| """Deinitialises the MP3 and releases all memory resources for reuse."""
//| ...
//|
STATIC mp_obj_t audiomp3_mp3file_deinit(mp_obj_t self_in) {
audiomp3_mp3file_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_audiomp3_mp3file_deinit(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(audiomp3_mp3file_deinit_obj, audiomp3_mp3file_deinit);
STATIC void check_for_deinit(audiomp3_mp3file_obj_t *self) {
if (common_hal_audiomp3_mp3file_deinited(self)) {
raise_deinited_error();
}
}
//| def __enter__(self) -> MP3Decoder:
//| """No-op used by Context Managers."""
//| ...
//|
// Provided by context manager helper.
//| def __exit__(self) -> None:
//| """Automatically deinitializes the hardware when exiting a context. See
//| :ref:`lifetime-and-contextmanagers` for more info."""
//| ...
//|
STATIC mp_obj_t audiomp3_mp3file_obj___exit__(size_t n_args, const mp_obj_t *args) {
(void)n_args;
common_hal_audiomp3_mp3file_deinit(args[0]);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(audiomp3_mp3file___exit___obj, 4, 4, audiomp3_mp3file_obj___exit__);
//| file: typing.BinaryIO
//| """File to play back."""
//|
STATIC mp_obj_t audiomp3_mp3file_obj_get_file(mp_obj_t self_in) {
audiomp3_mp3file_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return self->file;
}
MP_DEFINE_CONST_FUN_OBJ_1(audiomp3_mp3file_get_file_obj, audiomp3_mp3file_obj_get_file);
STATIC mp_obj_t audiomp3_mp3file_obj_set_file(mp_obj_t self_in, mp_obj_t file) {
audiomp3_mp3file_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
if (!mp_obj_is_type(file, &mp_type_fileio)) {
mp_raise_TypeError(translate("file must be a file opened in byte mode"));
}
common_hal_audiomp3_mp3file_set_file(self, file);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(audiomp3_mp3file_set_file_obj, audiomp3_mp3file_obj_set_file);
const mp_obj_property_t audiomp3_mp3file_file_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&audiomp3_mp3file_get_file_obj,
(mp_obj_t)&audiomp3_mp3file_set_file_obj,
MP_ROM_NONE},
};
//| sample_rate: int
//| """32 bit value that dictates how quickly samples are loaded into the DAC
//| in Hertz (cycles per second). When the sample is looped, this can change
//| the pitch output without changing the underlying sample."""
//|
STATIC mp_obj_t audiomp3_mp3file_obj_get_sample_rate(mp_obj_t self_in) {
audiomp3_mp3file_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return MP_OBJ_NEW_SMALL_INT(common_hal_audiomp3_mp3file_get_sample_rate(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(audiomp3_mp3file_get_sample_rate_obj, audiomp3_mp3file_obj_get_sample_rate);
STATIC mp_obj_t audiomp3_mp3file_obj_set_sample_rate(mp_obj_t self_in, mp_obj_t sample_rate) {
audiomp3_mp3file_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
common_hal_audiomp3_mp3file_set_sample_rate(self, mp_obj_get_int(sample_rate));
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(audiomp3_mp3file_set_sample_rate_obj, audiomp3_mp3file_obj_set_sample_rate);
const mp_obj_property_t audiomp3_mp3file_sample_rate_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&audiomp3_mp3file_get_sample_rate_obj,
(mp_obj_t)&audiomp3_mp3file_set_sample_rate_obj,
MP_ROM_NONE},
};
//| bits_per_sample: int
//| """Bits per sample. (read only)"""
//|
STATIC mp_obj_t audiomp3_mp3file_obj_get_bits_per_sample(mp_obj_t self_in) {
audiomp3_mp3file_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return MP_OBJ_NEW_SMALL_INT(common_hal_audiomp3_mp3file_get_bits_per_sample(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(audiomp3_mp3file_get_bits_per_sample_obj, audiomp3_mp3file_obj_get_bits_per_sample);
const mp_obj_property_t audiomp3_mp3file_bits_per_sample_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&audiomp3_mp3file_get_bits_per_sample_obj,
MP_ROM_NONE,
MP_ROM_NONE},
};
//| channel_count: int
//| """Number of audio channels. (read only)"""
//|
STATIC mp_obj_t audiomp3_mp3file_obj_get_channel_count(mp_obj_t self_in) {
audiomp3_mp3file_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return MP_OBJ_NEW_SMALL_INT(common_hal_audiomp3_mp3file_get_channel_count(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(audiomp3_mp3file_get_channel_count_obj, audiomp3_mp3file_obj_get_channel_count);
const mp_obj_property_t audiomp3_mp3file_channel_count_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&audiomp3_mp3file_get_channel_count_obj,
MP_ROM_NONE,
MP_ROM_NONE},
};
//| rms_level: float
//| """The RMS audio level of a recently played moment of audio. (read only)"""
//|
STATIC mp_obj_t audiomp3_mp3file_obj_get_rms_level(mp_obj_t self_in) {
audiomp3_mp3file_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return mp_obj_new_float(common_hal_audiomp3_mp3file_get_rms_level(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(audiomp3_mp3file_get_rms_level_obj, audiomp3_mp3file_obj_get_rms_level);
const mp_obj_property_t audiomp3_mp3file_rms_level_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&audiomp3_mp3file_get_rms_level_obj,
MP_ROM_NONE,
MP_ROM_NONE},
};
//| samples_decoded: int
//| """The number of audio samples decoded from the current file. (read only)"""
//|
STATIC mp_obj_t audiomp3_mp3file_obj_get_samples_decoded(mp_obj_t self_in) {
audiomp3_mp3file_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return MP_OBJ_NEW_SMALL_INT(common_hal_audiomp3_mp3file_get_samples_decoded(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(audiomp3_mp3file_get_samples_decoded_obj, audiomp3_mp3file_obj_get_samples_decoded);
const mp_obj_property_t audiomp3_mp3file_samples_decoded_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&audiomp3_mp3file_get_samples_decoded_obj,
MP_ROM_NONE,
MP_ROM_NONE},
};
STATIC const mp_rom_map_elem_t audiomp3_mp3file_locals_dict_table[] = {
// Methods
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&audiomp3_mp3file_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) },
{ MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&audiomp3_mp3file___exit___obj) },
// Properties
{ MP_ROM_QSTR(MP_QSTR_file), MP_ROM_PTR(&audiomp3_mp3file_file_obj) },
{ MP_ROM_QSTR(MP_QSTR_sample_rate), MP_ROM_PTR(&audiomp3_mp3file_sample_rate_obj) },
{ MP_ROM_QSTR(MP_QSTR_bits_per_sample), MP_ROM_PTR(&audiomp3_mp3file_bits_per_sample_obj) },
{ MP_ROM_QSTR(MP_QSTR_channel_count), MP_ROM_PTR(&audiomp3_mp3file_channel_count_obj) },
{ MP_ROM_QSTR(MP_QSTR_rms_level), MP_ROM_PTR(&audiomp3_mp3file_rms_level_obj) },
{ MP_ROM_QSTR(MP_QSTR_samples_decoded), MP_ROM_PTR(&audiomp3_mp3file_samples_decoded_obj) },
};
STATIC MP_DEFINE_CONST_DICT(audiomp3_mp3file_locals_dict, audiomp3_mp3file_locals_dict_table);
STATIC const audiosample_p_t audiomp3_mp3file_proto = {
MP_PROTO_IMPLEMENT(MP_QSTR_protocol_audiosample)
.sample_rate = (audiosample_sample_rate_fun)common_hal_audiomp3_mp3file_get_sample_rate,
.bits_per_sample = (audiosample_bits_per_sample_fun)common_hal_audiomp3_mp3file_get_bits_per_sample,
.channel_count = (audiosample_channel_count_fun)common_hal_audiomp3_mp3file_get_channel_count,
.reset_buffer = (audiosample_reset_buffer_fun)audiomp3_mp3file_reset_buffer,
.get_buffer = (audiosample_get_buffer_fun)audiomp3_mp3file_get_buffer,
.get_buffer_structure = (audiosample_get_buffer_structure_fun)audiomp3_mp3file_get_buffer_structure,
};
const mp_obj_type_t audiomp3_mp3file_type = {
{ &mp_type_type },
.name = MP_QSTR_MP3Decoder,
.flags = MP_TYPE_FLAG_EXTENDED,
.make_new = audiomp3_mp3file_make_new,
.locals_dict = (mp_obj_dict_t *)&audiomp3_mp3file_locals_dict,
MP_TYPE_EXTENDED_FIELDS(
.protocol = &audiomp3_mp3file_proto,
),
};