circuitpython/stmhal/hal/src/stm32f4xx_hal_can.c
Damien George 3ef911345c stmhal: Update STM32Cube F4 HAL driver to V1.3.0.
This patch updates ST's HAL to the latest version, V1.3.0, dated 19 June
2014.  Files were copied verbatim from the ST package.  Only change was
to suppress compiler warning of unused variables in 4 places.

A lot of the changes from ST are cosmetic: comments and white space.
Some small code changes here and there, and addition of F411 header.

Main code change is how SysTick interrupt is set: it now has a
configuration variable to set the priority, so we no longer need to work
around this (originall in system_stm32f4xx.c).
2014-08-06 22:33:31 +01:00

1414 lines
45 KiB
C

/**
******************************************************************************
* @file stm32f4xx_hal_can.c
* @author MCD Application Team
* @version V1.1.0
* @date 19-June-2014
* @brief This file provides firmware functions to manage the following
* functionalities of the Controller Area Network (CAN) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Control functions
* + Peripheral State and Error functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Enable the CAN controller interface clock using
__CAN1_CLK_ENABLE() for CAN1 and __CAN1_CLK_ENABLE() for CAN2
-@- In case you are using CAN2 only, you have to enable the CAN1 clock.
(#) CAN pins configuration
(++) Enable the clock for the CAN GPIOs using the following function:
__GPIOx_CLK_ENABLE()
(++) Connect and configure the involved CAN pins to AF9 using the
following function HAL_GPIO_Init()
(#) Initialise and configure the CAN using CAN_Init() function.
(#) Transmit the desired CAN frame using HAL_CAN_Transmit() function.
(#) Receive a CAN frame using HAL_CAN_Recieve() function.
*** Polling mode IO operation ***
=================================
[..]
(+) Start the CAN peripheral transmission and wait the end of this operation
using HAL_CAN_Transmit(), at this stage user can specify the value of timeout
according to his end application
(+) Start the CAN peripheral reception and wait the end of this operation
using HAL_CAN_Receive(), at this stage user can specify the value of timeout
according to his end application
*** Interrupt mode IO operation ***
===================================
[..]
(+) Start the CAN peripheral transmission using HAL_CAN_Transmit_IT()
(+) Start the CAN peripheral reception using HAL_CAN_Receive_IT()
(+) Use HAL_CAN_IRQHandler() called under the used CAN Interrupt subroutine
(+) At CAN end of transmission HAL_CAN_TxCpltCallback() function is executed and user can
add his own code by customization of function pointer HAL_CAN_TxCpltCallback
(+) In case of CAN Error, HAL_CAN_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_CAN_ErrorCallback
*** CAN HAL driver macros list ***
=============================================
[..]
Below the list of most used macros in CAN HAL driver.
(+) __HAL_CAN_ENABLE_IT: Enable the specified CAN interrupts
(+) __HAL_CAN_DISABLE_IT: Disable the specified CAN interrupts
(+) __HAL_CAN_GET_IT_SOURCE: Check if the specified CAN interrupt source is enabled or disabled
(+) __HAL_CAN_CLEAR_FLAG: Clear the CAN's pending flags
(+) __HAL_CAN_GET_FLAG: Get the selected CAN's flag status
[..]
(@) You can refer to the CAN HAL driver header file for more useful macros
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup CAN
* @brief CAN driver modules
* @{
*/
#ifdef HAL_CAN_MODULE_ENABLED
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) || defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define CAN_TIMEOUT_VALUE 10
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber);
static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan);
/* Private functions ---------------------------------------------------------*/
/** @defgroup CAN_Private_Functions
* @{
*/
/** @defgroup CAN_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Initialize and configure the CAN.
(+) De-initialize the CAN.
@endverbatim
* @{
*/
/**
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_InitStruct.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef* hcan)
{
uint32_t InitStatus = 3;
uint32_t tickstart = 0;
/* Check CAN handle */
if(hcan == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TTCM));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.ABOM));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AWUM));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.NART));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.RFLM));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TXFP));
assert_param(IS_CAN_MODE(hcan->Init.Mode));
assert_param(IS_CAN_SJW(hcan->Init.SJW));
assert_param(IS_CAN_BS1(hcan->Init.BS1));
assert_param(IS_CAN_BS2(hcan->Init.BS2));
assert_param(IS_CAN_PRESCALER(hcan->Init.Prescaler));
if(hcan->State == HAL_CAN_STATE_RESET)
{
/* Init the low level hardware */
HAL_CAN_MspInit(hcan);
}
/* Initialize the CAN state*/
hcan->State = HAL_CAN_STATE_BUSY;
/* Exit from sleep mode */
hcan->Instance->MCR &= (~(uint32_t)CAN_MCR_SLEEP);
/* Request initialisation */
hcan->Instance->MCR |= CAN_MCR_INRQ ;
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
{
if((HAL_GetTick() - tickstart ) > CAN_TIMEOUT_VALUE)
{
hcan->State= HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
/* Check acknowledge */
if ((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
{
InitStatus = CAN_INITSTATUS_FAILED;
}
else
{
/* Set the time triggered communication mode */
if (hcan->Init.TTCM == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_TTCM;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TTCM;
}
/* Set the automatic bus-off management */
if (hcan->Init.ABOM == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_ABOM;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_ABOM;
}
/* Set the automatic wake-up mode */
if (hcan->Init.AWUM == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_AWUM;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_AWUM;
}
/* Set the no automatic retransmission */
if (hcan->Init.NART == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_NART;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_NART;
}
/* Set the receive FIFO locked mode */
if (hcan->Init.RFLM == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_RFLM;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_RFLM;
}
/* Set the transmit FIFO priority */
if (hcan->Init.TXFP == ENABLE)
{
hcan->Instance->MCR |= CAN_MCR_TXFP;
}
else
{
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TXFP;
}
/* Set the bit timing register */
hcan->Instance->BTR = (uint32_t)((uint32_t)hcan->Init.Mode) | \
((uint32_t)hcan->Init.SJW) | \
((uint32_t)hcan->Init.BS1) | \
((uint32_t)hcan->Init.BS2) | \
((uint32_t)hcan->Init.Prescaler - 1);
/* Request leave initialisation */
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_INRQ;
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
{
if((HAL_GetTick() - tickstart ) > CAN_TIMEOUT_VALUE)
{
hcan->State= HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
/* Check acknowledged */
if ((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
{
InitStatus = CAN_INITSTATUS_FAILED;
}
else
{
InitStatus = CAN_INITSTATUS_SUCCESS;
}
}
if(InitStatus == CAN_INITSTATUS_SUCCESS)
{
/* Set CAN error code to none */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Initialize the CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Return function status */
return HAL_OK;
}
else
{
/* Initialize the CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Configures the CAN reception filter according to the specified
* parameters in the CAN_FilterInitStruct.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param sFilterConfig: pointer to a CAN_FilterConfTypeDef structure that
* contains the filter configuration information.
* @retval None
*/
HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef* hcan, CAN_FilterConfTypeDef* sFilterConfig)
{
uint32_t filternbrbitpos = 0;
/* Check the parameters */
assert_param(IS_CAN_FILTER_NUMBER(sFilterConfig->FilterNumber));
assert_param(IS_CAN_FILTER_MODE(sFilterConfig->FilterMode));
assert_param(IS_CAN_FILTER_SCALE(sFilterConfig->FilterScale));
assert_param(IS_CAN_FILTER_FIFO(sFilterConfig->FilterFIFOAssignment));
assert_param(IS_FUNCTIONAL_STATE(sFilterConfig->FilterActivation));
assert_param(IS_CAN_BANKNUMBER(sFilterConfig->BankNumber));
filternbrbitpos = ((uint32_t)1) << sFilterConfig->FilterNumber;
/* Initialisation mode for the filter */
CAN1->FMR |= (uint32_t)CAN_FMR_FINIT;
/* Select the start slave bank */
CAN1->FMR &= ~((uint32_t)CAN_FMR_CAN2SB);
CAN1->FMR |= (uint32_t)(sFilterConfig->BankNumber << 8);
/* Filter Deactivation */
CAN1->FA1R &= ~(uint32_t)filternbrbitpos;
/* Filter Scale */
if (sFilterConfig->FilterScale == CAN_FILTERSCALE_16BIT)
{
/* 16-bit scale for the filter */
CAN1->FS1R &= ~(uint32_t)filternbrbitpos;
/* First 16-bit identifier and First 16-bit mask */
/* Or First 16-bit identifier and Second 16-bit identifier */
CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow) << 16) |
(0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow);
/* Second 16-bit identifier and Second 16-bit mask */
/* Or Third 16-bit identifier and Fourth 16-bit identifier */
CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh);
}
if (sFilterConfig->FilterScale == CAN_FILTERSCALE_32BIT)
{
/* 32-bit scale for the filter */
CAN1->FS1R |= filternbrbitpos;
/* 32-bit identifier or First 32-bit identifier */
CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh) << 16) |
(0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow);
/* 32-bit mask or Second 32-bit identifier */
CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow);
}
/* Filter Mode */
if (sFilterConfig->FilterMode == CAN_FILTERMODE_IDMASK)
{
/*Id/Mask mode for the filter*/
CAN1->FM1R &= ~(uint32_t)filternbrbitpos;
}
else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
{
/*Identifier list mode for the filter*/
CAN1->FM1R |= (uint32_t)filternbrbitpos;
}
/* Filter FIFO assignment */
if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO0)
{
/* FIFO 0 assignation for the filter */
CAN1->FFA1R &= ~(uint32_t)filternbrbitpos;
}
if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO1)
{
/* FIFO 1 assignation for the filter */
CAN1->FFA1R |= (uint32_t)filternbrbitpos;
}
/* Filter activation */
if (sFilterConfig->FilterActivation == ENABLE)
{
CAN1->FA1R |= filternbrbitpos;
}
/* Leave the initialisation mode for the filter */
CAN1->FMR &= ~((uint32_t)CAN_FMR_FINIT);
/* Return function status */
return HAL_OK;
}
/**
* @brief Deinitializes the CANx peripheral registers to their default reset values.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef* hcan)
{
/* Check CAN handle */
if(hcan == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY;
/* DeInit the low level hardware */
HAL_CAN_MspDeInit(hcan);
/* Change CAN state */
hcan->State = HAL_CAN_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hcan);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CAN MSP.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the CAN MSP.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_MspDeInit could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CAN_Group2 IO operation functions
* @brief IO operation functions
*
@verbatim
==============================================================================
##### IO operation functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Transmit a CAN frame message.
(+) Receive a CAN frame message.
(+) Enter CAN peripheral in sleep mode.
(+) Wake up the CAN peripheral from sleep mode.
@endverbatim
* @{
*/
/**
* @brief Initiates and transmits a CAN frame message.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param Timeout: Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Transmit(CAN_HandleTypeDef* hcan, uint32_t Timeout)
{
uint32_t transmitmailbox = 5;
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE));
assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR));
assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC));
/* Process locked */
__HAL_LOCK(hcan);
if(hcan->State == HAL_CAN_STATE_BUSY_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX;
}
/* Select one empty transmit mailbox */
if ((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
{
transmitmailbox = 0;
}
else if ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
{
transmitmailbox = 1;
}
else if ((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
{
transmitmailbox = 2;
}
else
{
transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
}
if (transmitmailbox != CAN_TXSTATUS_NOMAILBOX)
{
/* Set up the Id */
hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
if (hcan->pTxMsg->IDE == CAN_ID_STD)
{
assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \
hcan->pTxMsg->RTR);
}
else
{
assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \
hcan->pTxMsg->IDE | \
hcan->pTxMsg->RTR);
}
/* Set up the DLC */
hcan->pTxMsg->DLC &= (uint8_t)0x0000000F;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC;
/* Set up the data field */
hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) |
((uint32_t)hcan->pTxMsg->Data[2] << 16) |
((uint32_t)hcan->pTxMsg->Data[1] << 8) |
((uint32_t)hcan->pTxMsg->Data[0]));
hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) |
((uint32_t)hcan->pTxMsg->Data[6] << 16) |
((uint32_t)hcan->pTxMsg->Data[5] << 8) |
((uint32_t)hcan->pTxMsg->Data[4]));
/* Request transmission */
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
/* Get tick */
tickstart = HAL_GetTick();
/* Check End of transmission flag */
while(!(__HAL_CAN_TRANSMIT_STATUS(hcan, transmitmailbox)))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hcan->State = HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
}
if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_RX;
/* Process unlocked */
__HAL_UNLOCK(hcan);
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcan);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initiates and transmits a CAN frame message.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Transmit_IT(CAN_HandleTypeDef* hcan)
{
uint32_t transmitmailbox = 5;
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE));
assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR));
assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC));
tmp = hcan->State;
if((tmp == HAL_CAN_STATE_READY) || (tmp == HAL_CAN_STATE_BUSY_RX))
{
/* Process Locked */
__HAL_LOCK(hcan);
/* Select one empty transmit mailbox */
if((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
{
transmitmailbox = 0;
}
else if((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
{
transmitmailbox = 1;
}
else if((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
{
transmitmailbox = 2;
}
else
{
transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
}
if(transmitmailbox != CAN_TXSTATUS_NOMAILBOX)
{
/* Set up the Id */
hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
if(hcan->pTxMsg->IDE == CAN_ID_STD)
{
assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \
hcan->pTxMsg->RTR);
}
else
{
assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId));
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \
hcan->pTxMsg->IDE | \
hcan->pTxMsg->RTR);
}
/* Set up the DLC */
hcan->pTxMsg->DLC &= (uint8_t)0x0000000F;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC;
/* Set up the data field */
hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) |
((uint32_t)hcan->pTxMsg->Data[2] << 16) |
((uint32_t)hcan->pTxMsg->Data[1] << 8) |
((uint32_t)hcan->pTxMsg->Data[0]));
hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) |
((uint32_t)hcan->pTxMsg->Data[6] << 16) |
((uint32_t)hcan->pTxMsg->Data[5] << 8) |
((uint32_t)hcan->pTxMsg->Data[4]));
if(hcan->State == HAL_CAN_STATE_BUSY_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX;
}
/* Set CAN error code to none */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Process Unlocked */
__HAL_UNLOCK(hcan);
/* Enable Error warning Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG);
/* Enable Error passive Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_EPV);
/* Enable Bus-off Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_BOF);
/* Enable Last error code Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_LEC);
/* Enable Error Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERR);
/* Enable Transmit mailbox empty Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_TME);
/* Request transmission */
hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
}
}
else
{
return HAL_BUSY;
}
return HAL_OK;
}
/**
* @brief Receives a correct CAN frame.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param FIFONumber: FIFO Number value
* @param Timeout: Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Receive(CAN_HandleTypeDef* hcan, uint8_t FIFONumber, uint32_t Timeout)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_CAN_FIFO(FIFONumber));
/* Process locked */
__HAL_LOCK(hcan);
if(hcan->State == HAL_CAN_STATE_BUSY_TX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_RX;
}
/* Get tick */
tickstart = HAL_GetTick();
/* Check pending message */
while(__HAL_CAN_MSG_PENDING(hcan, FIFONumber) == 0)
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
hcan->State = HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
}
/* Get the Id */
hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
if (hcan->pRxMsg->IDE == CAN_ID_STD)
{
hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21);
}
else
{
hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3);
}
hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
/* Get the DLC */
hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR;
/* Get the FMI */
hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8);
/* Get the data field */
hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR;
hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8);
hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16);
hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24);
hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR;
hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8);
hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16);
hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24);
/* Release the FIFO */
if(FIFONumber == CAN_FIFO0)
{
/* Release FIFO0 */
__HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0);
}
else /* FIFONumber == CAN_FIFO1 */
{
/* Release FIFO1 */
__HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1);
}
if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX;
/* Process unlocked */
__HAL_UNLOCK(hcan);
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcan);
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Receives a correct CAN frame.
* @param hcan: Pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param FIFONumber: Specify the FIFO number
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber)
{
uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_CAN_FIFO(FIFONumber));
tmp = hcan->State;
if((tmp == HAL_CAN_STATE_READY) || (tmp == HAL_CAN_STATE_BUSY_TX))
{
/* Process locked */
__HAL_LOCK(hcan);
if(hcan->State == HAL_CAN_STATE_BUSY_TX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_RX;
}
/* Set CAN error code to none */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Enable Error warning Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG);
/* Enable Error passive Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_EPV);
/* Enable Bus-off Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_BOF);
/* Enable Last error code Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_LEC);
/* Enable Error Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERR);
/* Process unlocked */
__HAL_UNLOCK(hcan);
if(FIFONumber == CAN_FIFO0)
{
/* Enable FIFO 0 message pending Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP0);
}
else
{
/* Enable FIFO 1 message pending Interrupt */
__HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP1);
}
}
else
{
return HAL_BUSY;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Enters the Sleep (low power) mode.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_CAN_Sleep(CAN_HandleTypeDef* hcan)
{
uint32_t tickstart = 0;
/* Process locked */
__HAL_LOCK(hcan);
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY;
/* Request Sleep mode */
hcan->Instance->MCR = (((hcan->Instance->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
/* Sleep mode status */
if ((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK)
{
/* Return function status */
return HAL_ERROR;
}
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK)
{
if((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
hcan->State = HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcan);
/* Return function status */
return HAL_OK;
}
/**
* @brief Wakes up the CAN peripheral from sleep mode, after that the CAN peripheral
* is in the normal mode.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef* hcan)
{
uint32_t tickstart = 0;
/* Process locked */
__HAL_LOCK(hcan);
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY;
/* Wake up request */
hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_SLEEP;
/* Get tick */
tickstart = HAL_GetTick();
/* Sleep mode status */
while((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)
{
if((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
hcan->State= HAL_CAN_STATE_TIMEOUT;
/* Process unlocked */
__HAL_UNLOCK(hcan);
return HAL_TIMEOUT;
}
}
if((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)
{
/* Return function status */
return HAL_ERROR;
}
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hcan);
/* Return function status */
return HAL_OK;
}
/**
* @brief Handles CAN interrupt request
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
void HAL_CAN_IRQHandler(CAN_HandleTypeDef* hcan)
{
uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0;
/* Check End of transmission flag */
if(__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_TME))
{
tmp1 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_0);
tmp2 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_1);
tmp3 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_2);
if(tmp1 || tmp2 || tmp3)
{
/* Call transmit function */
CAN_Transmit_IT(hcan);
}
}
tmp1 = __HAL_CAN_MSG_PENDING(hcan, CAN_FIFO0);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP0);
/* Check End of reception flag for FIFO0 */
if((tmp1 != 0) && tmp2)
{
/* Call receive function */
CAN_Receive_IT(hcan, CAN_FIFO0);
}
tmp1 = __HAL_CAN_MSG_PENDING(hcan, CAN_FIFO1);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP1);
/* Check End of reception flag for FIFO1 */
if((tmp1 != 0) && tmp2)
{
/* Call receive function */
CAN_Receive_IT(hcan, CAN_FIFO1);
}
tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EWG);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EWG);
tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR);
/* Check Error Warning Flag */
if(tmp1 && tmp2 && tmp3)
{
/* Set CAN error code to EWG error */
hcan->ErrorCode |= HAL_CAN_ERROR_EWG;
/* Clear Error Warning Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_EWG);
}
tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EPV);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EPV);
tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR);
/* Check Error Passive Flag */
if(tmp1 && tmp2 && tmp3)
{
/* Set CAN error code to EPV error */
hcan->ErrorCode |= HAL_CAN_ERROR_EPV;
/* Clear Error Passive Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_EPV);
}
tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_BOF);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_BOF);
tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR);
/* Check Bus-Off Flag */
if(tmp1 && tmp2 && tmp3)
{
/* Set CAN error code to BOF error */
hcan->ErrorCode |= HAL_CAN_ERROR_BOF;
/* Clear Bus-Off Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_BOF);
}
tmp1 = HAL_IS_BIT_CLR(hcan->Instance->ESR, CAN_ESR_LEC);
tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_LEC);
tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR);
/* Check Last error code Flag */
if((!tmp1) && tmp2 && tmp3)
{
tmp1 = (hcan->Instance->ESR) & CAN_ESR_LEC;
switch(tmp1)
{
case(CAN_ESR_LEC_0):
/* Set CAN error code to STF error */
hcan->ErrorCode |= HAL_CAN_ERROR_STF;
break;
case(CAN_ESR_LEC_1):
/* Set CAN error code to FOR error */
hcan->ErrorCode |= HAL_CAN_ERROR_FOR;
break;
case(CAN_ESR_LEC_1 | CAN_ESR_LEC_0):
/* Set CAN error code to ACK error */
hcan->ErrorCode |= HAL_CAN_ERROR_ACK;
break;
case(CAN_ESR_LEC_2):
/* Set CAN error code to BR error */
hcan->ErrorCode |= HAL_CAN_ERROR_BR;
break;
case(CAN_ESR_LEC_2 | CAN_ESR_LEC_0):
/* Set CAN error code to BD error */
hcan->ErrorCode |= HAL_CAN_ERROR_BD;
break;
case(CAN_ESR_LEC_2 | CAN_ESR_LEC_1):
/* Set CAN error code to CRC error */
hcan->ErrorCode |= HAL_CAN_ERROR_CRC;
break;
default:
break;
}
/* Clear Last error code Flag */
hcan->Instance->ESR &= ~(CAN_ESR_LEC);
}
/* Call the Error call Back in case of Errors */
if(hcan->ErrorCode != HAL_CAN_ERROR_NONE)
{
/* Set the CAN state ready to be able to start again the process */
hcan->State = HAL_CAN_STATE_READY;
/* Call Error callback function */
HAL_CAN_ErrorCallback(hcan);
}
}
/**
* @brief Transmission complete callback in non blocking mode
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxCpltCallback(CAN_HandleTypeDef* hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Transmission complete callback in non blocking mode
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Error CAN callback.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CAN_Group3 Peripheral State and Error functions
* @brief CAN Peripheral State functions
*
@verbatim
==============================================================================
##### Peripheral State and Error functions #####
==============================================================================
[..]
This subsection provides functions allowing to :
(+) Check the CAN state.
(+) Check CAN Errors detected during interrupt process
@endverbatim
* @{
*/
/**
* @brief return the CAN state
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL state
*/
HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef* hcan)
{
/* Return CAN state */
return hcan->State;
}
/**
* @brief Return the CAN error code
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval CAN Error Code
*/
uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan)
{
return hcan->ErrorCode;
}
/**
* @}
*/
/**
* @brief Initiates and transmits a CAN frame message.
* @param hcan: pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan)
{
/* Disable Transmit mailbox empty Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_TME);
if(hcan->State == HAL_CAN_STATE_BUSY_TX)
{
/* Disable Error warning Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG);
/* Disable Error passive Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_EPV);
/* Disable Bus-off Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_BOF);
/* Disable Last error code Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_LEC);
/* Disable Error Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_ERR);
}
if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX)
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_BUSY_RX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
}
/* Transmission complete callback */
HAL_CAN_TxCpltCallback(hcan);
return HAL_OK;
}
/**
* @brief Receives a correct CAN frame.
* @param hcan: Pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param FIFONumber: Specify the FIFO number
* @retval HAL status
* @retval None
*/
static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber)
{
/* Get the Id */
hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
if (hcan->pRxMsg->IDE == CAN_ID_STD)
{
hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21);
}
else
{
hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3);
}
hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR;
/* Get the DLC */
hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR;
/* Get the FMI */
hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8);
/* Get the data field */
hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR;
hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8);
hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16);
hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24);
hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR;
hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8);
hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16);
hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24);
/* Release the FIFO */
/* Release FIFO0 */
if (FIFONumber == CAN_FIFO0)
{
__HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0);
/* Disable FIFO 0 message pending Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP0);
}
/* Release FIFO1 */
else /* FIFONumber == CAN_FIFO1 */
{
__HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1);
/* Disable FIFO 1 message pending Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP1);
}
if(hcan->State == HAL_CAN_STATE_BUSY_RX)
{
/* Disable Error warning Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG);
/* Disable Error passive Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_EPV);
/* Disable Bus-off Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_BOF);
/* Disable Last error code Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_LEC);
/* Disable Error Interrupt */
__HAL_CAN_DISABLE_IT(hcan, CAN_IT_ERR);
}
if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX)
{
/* Disable CAN state */
hcan->State = HAL_CAN_STATE_BUSY_TX;
}
else
{
/* Change CAN state */
hcan->State = HAL_CAN_STATE_READY;
}
/* Receive complete callback */
HAL_CAN_RxCpltCallback(hcan);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
#endif /* HAL_CAN_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/