circuitpython/esp8266/espapa102.c
misterdanb a0a08b4be1 esp8266: Add APA102 serial individually controllable LEDs support.
APA102 is a new "smart LED", similar to WS2812 aka "Neopixel".
2016-05-19 22:29:11 +03:00

111 lines
3.9 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Robert Foss, Daniel Busch
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "c_types.h"
#include "eagle_soc.h"
#include "user_interface.h"
#include "espapa102.h"
#define NOP asm volatile(" nop \n\t")
static inline void _esp_apa102_send_byte(uint32_t clockPinMask, uint32_t dataPinMask, uint8_t byte) {
for (uint32_t i = 0; i < 8; i++) {
if (byte & 0x80) {
// set data pin high
GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS, dataPinMask);
} else {
// set data pin low
GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS, dataPinMask);
}
// set clock pin high
GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS, clockPinMask);
byte <<= 1;
NOP;
NOP;
// set clock pin low
GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS, clockPinMask);
NOP;
NOP;
}
}
static inline void _esp_apa102_send_colors(uint32_t clockPinMask, uint32_t dataPinMask, uint8_t *pixels, uint32_t numBytes) {
for (uint32_t i = 0; i < numBytes / 4; i++) {
_esp_apa102_send_byte(clockPinMask, dataPinMask, pixels[i * 4 + 3] | 0xE0);
_esp_apa102_send_byte(clockPinMask, dataPinMask, pixels[i * 4 + 2]);
_esp_apa102_send_byte(clockPinMask, dataPinMask, pixels[i * 4 + 1]);
_esp_apa102_send_byte(clockPinMask, dataPinMask, pixels[i * 4]);
}
}
static inline void _esp_apa102_start_frame(uint32_t clockPinMask, uint32_t dataPinMask) {
for (uint32_t i = 0; i < 4; i++) {
_esp_apa102_send_byte(clockPinMask, dataPinMask, 0x00);
}
}
static inline void _esp_apa102_append_additionial_cycles(uint32_t clockPinMask, uint32_t dataPinMask, uint32_t numBytes) {
GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS, dataPinMask);
// we need to write some more clock cycles, because each led
// delays the data by one edge after inverting the clock
for (uint32_t i = 0; i < numBytes / 8 + ((numBytes / 4) % 2); i++) {
GPIO_REG_WRITE(GPIO_OUT_W1TS_ADDRESS, clockPinMask);
NOP;
NOP;
GPIO_REG_WRITE(GPIO_OUT_W1TC_ADDRESS, clockPinMask);
NOP;
NOP;
}
}
static inline void _esp_apa102_end_frame(uint32_t clockPinMask, uint32_t dataPinMask) {
for (uint32_t i = 0; i < 4; i++) {
_esp_apa102_send_byte(clockPinMask, dataPinMask, 0xFF);
}
}
void esp_apa102_write(uint8_t clockPin, uint8_t dataPin, uint8_t *pixels, uint32_t numBytes) {
uint32_t clockPinMask, dataPinMask;
clockPinMask = 1 << clockPin;
dataPinMask = 1 << dataPin;
// start the frame
_esp_apa102_start_frame(clockPinMask, dataPinMask);
// write pixels
_esp_apa102_send_colors(clockPinMask, dataPinMask, pixels, numBytes);
// end the frame
_esp_apa102_append_additionial_cycles(clockPinMask, dataPinMask, numBytes);
_esp_apa102_end_frame(clockPinMask, dataPinMask);
}