circuitpython/py/maketranslationdata.py

625 lines
20 KiB
Python

"""
Process raw qstr file and output qstr data with length, hash and data bytes.
This script is only regularly tested with the same version of Python used
during CI, typically the latest "3.x". However, incompatibilities with any
supported CPython version are unintended.
For documentation about the format of compressed translated strings, see
supervisor/shared/translate/translate.h
"""
from __future__ import print_function
import bisect
from dataclasses import dataclass
import re
import sys
import collections
import gettext
import pathlib
if hasattr(sys.stdout, "reconfigure"):
sys.stdout.reconfigure(encoding="utf-8")
sys.stderr.reconfigure(errors="backslashreplace")
sys.path.append(str(pathlib.Path(__file__).parent.parent / "tools/huffman"))
import huffman
from html.entities import codepoint2name
codepoint2name[ord("-")] = "hyphen"
# add some custom names to map characters that aren't in HTML
codepoint2name[ord(" ")] = "space"
codepoint2name[ord("'")] = "squot"
codepoint2name[ord(",")] = "comma"
codepoint2name[ord(".")] = "dot"
codepoint2name[ord(":")] = "colon"
codepoint2name[ord(";")] = "semicolon"
codepoint2name[ord("/")] = "slash"
codepoint2name[ord("%")] = "percent"
codepoint2name[ord("#")] = "hash"
codepoint2name[ord("(")] = "paren_open"
codepoint2name[ord(")")] = "paren_close"
codepoint2name[ord("[")] = "bracket_open"
codepoint2name[ord("]")] = "bracket_close"
codepoint2name[ord("{")] = "brace_open"
codepoint2name[ord("}")] = "brace_close"
codepoint2name[ord("*")] = "star"
codepoint2name[ord("!")] = "bang"
codepoint2name[ord("\\")] = "backslash"
codepoint2name[ord("+")] = "plus"
codepoint2name[ord("$")] = "dollar"
codepoint2name[ord("=")] = "equals"
codepoint2name[ord("?")] = "question"
codepoint2name[ord("@")] = "at_sign"
codepoint2name[ord("^")] = "caret"
codepoint2name[ord("|")] = "pipe"
codepoint2name[ord("~")] = "tilde"
C_ESCAPES = {
"\a": "\\a",
"\b": "\\b",
"\f": "\\f",
"\n": "\\n",
"\r": "\\r",
"\t": "\\t",
"\v": "\\v",
"'": "\\'",
'"': '\\"',
}
# this must match the equivalent function in qstr.c
def compute_hash(qstr, bytes_hash):
hash = 5381
for b in qstr:
hash = (hash * 33) ^ b
# Make sure that valid hash is never zero, zero means "hash not computed"
return (hash & ((1 << (8 * bytes_hash)) - 1)) or 1
def translate(translation_file, i18ns):
with open(translation_file, "rb") as f:
table = gettext.GNUTranslations(f)
translations = []
for original in i18ns:
unescaped = original
for s in C_ESCAPES:
unescaped = unescaped.replace(C_ESCAPES[s], s)
translation = table.gettext(unescaped)
# Add in carriage returns to work in terminals
translation = translation.replace("\n", "\r\n")
translations.append((original, translation))
return translations
class TextSplitter:
def __init__(self, words):
words = sorted(words, key=lambda x: len(x), reverse=True)
self.words = set(words)
if words:
pat = "|".join(re.escape(w) for w in words) + "|."
else:
pat = "."
self.pat = re.compile(pat, flags=re.DOTALL)
def iter_words(self, text):
s = []
words = self.words
for m in self.pat.finditer(text):
t = m.group(0)
if t in words:
if s:
yield (False, "".join(s))
s = []
yield (True, t)
else:
s.append(t)
if s:
yield (False, "".join(s))
def iter(self, text):
for m in self.pat.finditer(text):
yield m.group(0)
def iter_substrings(s, minlen, maxlen):
len_s = len(s)
maxlen = min(len_s, maxlen)
for n in range(minlen, maxlen + 1):
for begin in range(0, len_s - n + 1):
yield s[begin : begin + n]
translation_requires_uint16 = {"cs", "ja", "ko", "pl", "tr", "zh_Latn_pinyin"}
def compute_unicode_offset(texts):
all_ch = set(" ".join(texts))
ch_160 = sorted(c for c in all_ch if 160 <= ord(c) < 255)
ch_256 = sorted(c for c in all_ch if 255 < ord(c))
if not ch_256:
return 0, 0
min_256 = ord(min(ch_256))
span = ord(max(ch_256)) - ord(min(ch_256)) + 1
if ch_160:
max_160 = ord(max(ch_160)) + 1
else:
max_160 = max(160, 255 - span)
if max_160 + span > 256:
return 0, 0
offstart = max_160
offset = min_256 - max_160
return offstart, offset
@dataclass
class EncodingTable:
values: object
lengths: object
words: object
canonical: object
extractor: object
apply_offset: object
remove_offset: object
translation_qstr_bits: int
qstrs: object
qstrs_inv: object
def compute_huffman_coding(qstrs, translation_name, translations, f):
# possible future improvement: some languages are better when consider len(k) > 2. try both?
qstrs = dict((k, v) for k, v in qstrs.items() if len(k) > 3)
qstr_strs = list(qstrs.keys())
texts = [t[1] for t in translations]
words = []
start_unused = 0x80
end_unused = 0xFF
max_ord = 0
offstart, offset = compute_unicode_offset(texts)
def apply_offset(c):
oc = ord(c)
if oc >= offstart:
oc += offset
return chr(oc)
def remove_offset(c):
oc = ord(c)
if oc >= offstart:
oc = oc - offset
try:
return chr(oc)
except Exception as e:
raise ValueError(f"remove_offset {offstart=} {oc=}") from e
for text in texts:
for c in text:
c = remove_offset(c)
ord_c = ord(c)
max_ord = max(ord_c, max_ord)
if 0x80 <= ord_c < 0xFF:
end_unused = min(ord_c, end_unused)
max_words = end_unused - 0x80
bits_per_codepoint = 16 if max_ord > 255 else 8
values_type = "uint16_t" if max_ord > 255 else "uint8_t"
translation_name = translation_name.split("/")[-1].split(".")[0]
if max_ord > 255 and translation_name not in translation_requires_uint16:
raise ValueError(
f"Translation {translation_name} expected to fit in 8 bits but required 16 bits"
)
while len(words) < max_words:
# Until the dictionary is filled to capacity, use a heuristic to find
# the best "word" (2- to 11-gram) to add to it.
#
# The TextSplitter allows us to avoid considering parts of the text
# that are already covered by a previously chosen word, for example
# if "the" is in words then not only will "the" not be considered
# again, neither will "there" or "wither", since they have "the"
# as substrings.
extractor = TextSplitter(words + qstr_strs)
counter = collections.Counter()
for t in texts:
for atom in extractor.iter(t):
if atom in qstrs:
atom = "\1"
counter[atom] += 1
cb = huffman.codebook(counter.items())
lengths = sorted(dict((v, len(cb[k])) for k, v in counter.items()).items())
def bit_length(s):
return sum(len(cb[c]) for c in s)
def est_len(occ):
idx = bisect.bisect_left(lengths, (occ, 0))
return lengths[idx][1] + 1
# The cost of adding a dictionary word is just its storage size
# while its savings is close to the difference between the original
# huffman bit-length of the string and the estimated bit-length
# of the dictionary word, times the number of times the word appears.
#
# The savings is not strictly accurate because including a word into
# the Huffman tree bumps up the encoding lengths of all words in the
# same subtree. In the extreme case when the new word is so frequent
# that it gets a one-bit encoding, all other words will cost an extra
# bit each. This is empirically modeled by the constant factor added to
# cost, but the specific value used isn't "proven" to be correct.
#
# Another source of inaccuracy is that compressed strings end up
# on byte boundaries, not bit boundaries, so saving 1 bit somewhere
# might not save a byte.
#
# In fact, when this change was first made, some translations (luckily,
# ones on boards not at all close to full) wasted up to 40 bytes,
# while the most constrained boards typically gained 100 bytes or
# more.
#
# The difference between the two is the estimated net savings, in bits.
def est_net_savings(s, occ):
savings = occ * (bit_length(s) - est_len(occ))
cost = len(s) * bits_per_codepoint + 24
return savings - cost
counter = collections.Counter()
for t in texts:
for found, word in extractor.iter_words(t):
if not found:
for substr in iter_substrings(word, minlen=2, maxlen=11):
counter[substr] += 1
# Score the candidates we found. This is a semi-empirical formula that
# attempts to model the number of bits saved as closely as possible.
#
# It attempts to compute the codeword lengths of the original word
# to the codeword length the dictionary entry would get, times
# the number of occurrences, less the ovehead of the entries in the
# words[] array.
scores = sorted(
((s, -est_net_savings(s, occ)) for (s, occ) in counter.items() if occ > 1),
key=lambda x: x[1],
)
# Pick the one with the highest score. The score must be negative.
if not scores or scores[0][-1] >= 0:
break
word = scores[0][0]
words.append(word)
words.sort(key=len)
extractor = TextSplitter(words + qstr_strs)
counter = collections.Counter()
used_qstr = 0
for t in texts:
for atom in extractor.iter(t):
if atom in qstrs:
used_qstr = max(used_qstr, qstrs[atom])
atom = "\1"
counter[atom] += 1
cb = huffman.codebook(counter.items())
word_start = start_unused
word_end = word_start + len(words) - 1
f.write(f"// # words {len(words)}\n")
f.write(f"// words {words}\n")
values = []
length_count = {}
renumbered = 0
last_length = None
canonical = {}
for atom, code in sorted(cb.items(), key=lambda x: (len(x[1]), x[0])):
if atom in qstr_strs:
atom = "\1"
values.append(atom)
length = len(code)
if length not in length_count:
length_count[length] = 0
length_count[length] += 1
if last_length:
renumbered <<= length - last_length
# print(f"atom={repr(atom)} code={code}", file=sys.stderr)
canonical[atom] = "{0:0{width}b}".format(renumbered, width=length)
if len(atom) > 1:
o = words.index(atom) + 0x80
s = "".join(C_ESCAPES.get(ch1, ch1) for ch1 in atom)
f.write(f"// {o} {s} {counter[atom]} {canonical[atom]} {renumbered}\n")
else:
s = C_ESCAPES.get(atom, atom)
canonical[atom] = "{0:0{width}b}".format(renumbered, width=length)
o = ord(atom)
f.write(f"// {o} {s} {counter[atom]} {canonical[atom]} {renumbered}\n")
renumbered += 1
last_length = length
lengths = bytearray()
f.write(f"// length count {length_count}\n")
for i in range(1, max(length_count) + 2):
lengths.append(length_count.get(i, 0))
f.write(f"// values {values} lengths {len(lengths)} {lengths}\n")
f.write(f"// {values} {lengths}\n")
values = [(atom if len(atom) == 1 else chr(0x80 + words.index(atom))) for atom in values]
max_translation_encoded_length = max(
len(translation.encode("utf-8")) for (original, translation) in translations
)
maxlen = len(words[-1])
minlen = len(words[0])
wlencount = [len([None for w in words if len(w) == l]) for l in range(minlen, maxlen + 1)]
translation_qstr_bits = used_qstr.bit_length()
f.write("typedef {} mchar_t;\n".format(values_type))
f.write("const uint8_t lengths[] = {{ {} }};\n".format(", ".join(map(str, lengths))))
f.write(
"const mchar_t values[] = {{ {} }};\n".format(
", ".join(str(ord(remove_offset(u))) for u in values)
)
)
f.write(
"#define compress_max_length_bits ({})\n".format(
max_translation_encoded_length.bit_length()
)
)
f.write(
"const mchar_t words[] = {{ {} }};\n".format(
", ".join(str(ord(remove_offset(c))) for w in words for c in w)
)
)
f.write("const uint8_t wlencount[] = {{ {} }};\n".format(", ".join(str(p) for p in wlencount)))
f.write("#define word_start {}\n".format(word_start))
f.write("#define word_end {}\n".format(word_end))
f.write("#define minlen {}\n".format(minlen))
f.write("#define maxlen {}\n".format(maxlen))
f.write("#define translation_offstart {}\n".format(offstart))
f.write("#define translation_offset {}\n".format(offset))
f.write("#define translation_qstr_bits {}\n".format(translation_qstr_bits))
qstrs_inv = dict((v, k) for k, v in qstrs.items())
return EncodingTable(
values,
lengths,
words,
canonical,
extractor,
apply_offset,
remove_offset,
translation_qstr_bits,
qstrs,
qstrs_inv,
)
def decompress(encoding_table, encoded, encoded_length_bits):
qstrs_inv = encoding_table.qstrs_inv
values = encoding_table.values
lengths = encoding_table.lengths
words = encoding_table.words
def bititer():
for byte in encoded:
for bit in (0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1):
yield bool(byte & bit)
nextbit = bititer().__next__
def getnbits(n):
bits = 0
for i in range(n):
bits = (bits << 1) | nextbit()
return bits
dec = []
length = getnbits(encoded_length_bits)
i = 0
while i < length:
bits = 0
bit_length = 0
max_code = lengths[0]
searched_length = lengths[0]
while True:
bits = (bits << 1) | nextbit()
bit_length += 1
if max_code > 0 and bits < max_code:
# print('{0:0{width}b}'.format(bits, width=bit_length))
break
max_code = (max_code << 1) + lengths[bit_length]
searched_length += lengths[bit_length]
v = values[searched_length + bits - max_code]
if v == chr(1):
qstr_idx = getnbits(encoding_table.translation_qstr_bits)
v = qstrs_inv[qstr_idx]
elif v >= chr(0x80) and v < chr(0x80 + len(words)):
v = words[ord(v) - 0x80]
i += len(v.encode("utf-8"))
dec.append(v)
return "".join(dec)
def compress(encoding_table, decompressed, encoded_length_bits, len_translation_encoded):
if not isinstance(decompressed, str):
raise TypeError()
qstrs = encoding_table.qstrs
canonical = encoding_table.canonical
extractor = encoding_table.extractor
enc = 1
def put_bit(enc, b):
return (enc << 1) | bool(b)
def put_bits(enc, b, n):
for i in range(n - 1, -1, -1):
enc = put_bit(enc, b & (1 << i))
return enc
enc = put_bits(enc, len_translation_encoded, encoded_length_bits)
for atom in extractor.iter(decompressed):
if atom in qstrs:
can = canonical["\1"]
else:
can = canonical[atom]
for b in can:
enc = put_bit(enc, b == "1")
if atom in qstrs:
enc = put_bits(enc, qstrs[atom], encoding_table.translation_qstr_bits)
while enc.bit_length() % 8 != 1:
enc = put_bit(enc, 0)
r = enc.to_bytes((enc.bit_length() + 7) // 8, "big")
return r[1:]
def qstr_escape(qst):
def esc_char(m):
c = ord(m.group(0))
try:
name = codepoint2name[c]
except KeyError:
name = "0x%02x" % c
return "_" + name + "_"
return re.sub(r"[^A-Za-z0-9_]", esc_char, qst)
def parse_qstrs(infile):
r = {}
rx = re.compile(r'QDEF\([A-Za-z0-9_]+,\s*\d+,\s*\d+,\s*(?P<cstr>"(?:[^"\\\\]*|\\.)")\)')
content = infile.read()
for i, mat in enumerate(rx.findall(content, re.M)):
mat = eval(mat)
r[mat] = i
return r
def parse_input_headers(infiles):
i18ns = set()
# read the TRANSLATE strings in from the input files
for infile in infiles:
with open(infile, "rt") as f:
for line in f:
line = line.strip()
match = re.match(r'^TRANSLATE\("(.*)"\)$', line)
if match:
i18ns.add(match.group(1))
continue
return i18ns
def escape_bytes(qstr):
if all(32 <= ord(c) <= 126 and c != "\\" and c != '"' for c in qstr):
# qstr is all printable ASCII so render it as-is (for easier debugging)
return qstr
else:
# qstr contains non-printable codes so render entire thing as hex pairs
qbytes = bytes(qstr, "utf8")
return "".join(("\\x%02x" % b) for b in qbytes)
def make_bytes(cfg_bytes_len, cfg_bytes_hash, qstr):
qbytes = bytes(qstr, "utf8")
qlen = len(qbytes)
qhash = compute_hash(qbytes, cfg_bytes_hash)
if qlen >= (1 << (8 * cfg_bytes_len)):
print("qstr is too long:", qstr)
assert False
qdata = escape_bytes(qstr)
return '%d, %d, "%s"' % (qhash, qlen, qdata)
def output_translation_data(encoding_table, i18ns, out):
# print out the starter of the generated C file
out.write("// This file was automatically generated by maketranslatedata.py\n")
out.write('#include "supervisor/shared/translate/compressed_string.h"\n')
out.write("\n")
total_text_size = 0
total_text_compressed_size = 0
max_translation_encoded_length = max(
len(translation.encode("utf-8")) for original, translation in i18ns
)
encoded_length_bits = max_translation_encoded_length.bit_length()
for i, translation in enumerate(i18ns):
original, translation = translation
translation_encoded = translation.encode("utf-8")
compressed = compress(
encoding_table, translation, encoded_length_bits, len(translation_encoded)
)
total_text_compressed_size += len(compressed)
decompressed = decompress(encoding_table, compressed, encoded_length_bits)
assert decompressed == translation, (decompressed, translation)
for c in C_ESCAPES:
decompressed = decompressed.replace(c, C_ESCAPES[c])
formatted = ["{:d}".format(x) for x in compressed]
out.write(
"const compressed_string_t translation{} = {{ .data = {}, .tail = {{ {} }} }}; // {}\n".format(
i, formatted[0], ", ".join(formatted[1:]), original, decompressed
)
)
total_text_size += len(translation.encode("utf-8"))
out.write("\n")
out.write("// {} bytes worth of translations\n".format(total_text_size))
out.write("// {} bytes worth of translations compressed\n".format(total_text_compressed_size))
out.write("// {} bytes saved\n".format(total_text_size - total_text_compressed_size))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description="Process TRANSLATE strings into headers for compilation"
)
parser.add_argument(
"infiles", metavar="N", type=str, nargs="+", help="an integer for the accumulator"
)
parser.add_argument(
"--translation", default=None, type=str, help="translations for i18n() items"
)
parser.add_argument(
"--compression_filename",
type=argparse.FileType("w", encoding="UTF-8"),
help="header for compression info",
)
parser.add_argument(
"--translation_filename",
type=argparse.FileType("w", encoding="UTF-8"),
help="c file for translation data",
)
parser.add_argument(
"--qstrdefs_filename",
type=argparse.FileType("r", encoding="UTF-8"),
help="",
)
args = parser.parse_args()
qstrs = parse_qstrs(args.qstrdefs_filename)
i18ns = parse_input_headers(args.infiles)
i18ns = sorted(i18ns)
translations = translate(args.translation, i18ns)
encoding_table = compute_huffman_coding(
qstrs, args.translation, translations, args.compression_filename
)
output_translation_data(encoding_table, translations, args.translation_filename)