2021-09-07 16:35:42 -04:00

241 lines
8.2 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "mpconfigport.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "common-hal/audiobusio/I2SOut.h"
#include "shared-bindings/audiobusio/I2SOut.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-module/audiocore/__init__.h"
#include "bindings/rp2pio/StateMachine.h"
#include "supervisor/shared/translate.h"
const uint16_t i2s_program[] = {
// ; Load the next set of samples
// ; /--- LRCLK
// ; |/-- BCLK
// ; ||
// pull noblock side 0b01 ; Loads OSR with the next FIFO value or X
0x8880,
// mov x osr side 0b01 ; Save the new value in case we need it again
0xa827,
// set y 14 side 0b01
0xe84e,
// bitloop1:
// out pins 1 side 0b00 [2]
0x6201,
// jmp y-- bitloop1 side 0b01 [2]
0x0a83,
// out pins 1 side 0b10 [2]
0x7201,
// set y 14 side 0b11 [2]
0xfa4e,
// bitloop0:
// out pins 1 side 0b10 [2]
0x7201,
// jmp y-- bitloop0 side 0b11 [2]
0x1a87,
// out pins 1 side 0b00 [2]
0x6201
};
const uint16_t i2s_program_left_justified[] = {
// ; Load the next set of samples
// ; /--- LRCLK
// ; |/-- BCLK
// ; ||
// pull noblock side 0b11 ; Loads OSR with the next FIFO value or X
0x9880,
// mov x osr side 0b11 ; Save the new value in case we need it again
0xb827,
// set y 14 side 0b11
0xf84e,
// bitloop1:
// out pins 1 side 0b00 [2]
0x6201,
// jmp y-- bitloop1 side 0b01 [2]
0x0a83,
// out pins 1 side 0b10 [2]
0x6201,
// set y 14 side 0b01 [2]
0xea4e,
// bitloop0:
// out pins 1 side 0b10 [2]
0x7201,
// jmp y-- bitloop0 side 0b11 [2]
0x1a87,
// out pins 1 side 0b10 [2]
0x7201
};
void i2sout_reset(void) {
}
// Caller validates that pins are free.
void common_hal_audiobusio_i2sout_construct(audiobusio_i2sout_obj_t *self,
const mcu_pin_obj_t *bit_clock, const mcu_pin_obj_t *word_select,
const mcu_pin_obj_t *data, bool left_justified) {
if (bit_clock->number != word_select->number - 1) {
mp_raise_ValueError(translate("Bit clock and word select must be sequential pins"));
}
const uint16_t *program = i2s_program;
size_t program_len = sizeof(i2s_program) / sizeof(i2s_program[0]);
if (left_justified) {
program = i2s_program_left_justified;
program_len = sizeof(i2s_program_left_justified) / sizeof(i2s_program_left_justified[0]);
;
}
// Use the state machine to manage pins.
common_hal_rp2pio_statemachine_construct(
&self->state_machine,
program, program_len,
44100 * 32 * 6, // Clock at 44.1 khz to warm the DAC up.
NULL, 0,
data, 1, 0, 0xffffffff, // out pin
NULL, 0, // in pins
0, 0, // in pulls
NULL, 0, 0, 0x1f, // set pins
bit_clock, 2, 0, 0x1f, // sideset pins
NULL, // jump pin
0, // wait gpio pins
true, // exclusive pin use
false, 32, false, // shift out left to start with MSB
false, // Wait for txstall
false, 32, false, // in settings
false); // Not user-interruptible.
self->playing = false;
audio_dma_init(&self->dma);
}
bool common_hal_audiobusio_i2sout_deinited(audiobusio_i2sout_obj_t *self) {
return common_hal_rp2pio_statemachine_deinited(&self->state_machine);
}
void common_hal_audiobusio_i2sout_deinit(audiobusio_i2sout_obj_t *self) {
if (common_hal_audiobusio_i2sout_deinited(self)) {
return;
}
if (common_hal_audiobusio_i2sout_get_playing(self)) {
common_hal_audiobusio_i2sout_stop(self);
}
common_hal_rp2pio_statemachine_deinit(&self->state_machine);
audio_dma_deinit(&self->dma);
}
void common_hal_audiobusio_i2sout_play(audiobusio_i2sout_obj_t *self,
mp_obj_t sample, bool loop) {
if (common_hal_audiobusio_i2sout_get_playing(self)) {
common_hal_audiobusio_i2sout_stop(self);
}
uint8_t bits_per_sample = audiosample_bits_per_sample(sample);
// Make sure we transmit a minimum of 16 bits.
// TODO: Maybe we need an intermediate object to upsample instead. This is
// only needed for some I2S devices that expect at least 8.
if (bits_per_sample < 16) {
bits_per_sample = 16;
}
// We always output stereo so output twice as many bits.
uint16_t bits_per_sample_output = bits_per_sample * 2;
size_t clocks_per_bit = 6;
uint32_t frequency = bits_per_sample_output * audiosample_sample_rate(sample);
uint8_t channel_count = audiosample_channel_count(sample);
if (channel_count > 2) {
mp_raise_ValueError(translate("Too many channels in sample."));
}
common_hal_rp2pio_statemachine_set_frequency(&self->state_machine, clocks_per_bit * frequency);
common_hal_rp2pio_statemachine_restart(&self->state_machine);
// On the RP2040, output registers are always written with a 32-bit write.
// If the write is 8 or 16 bits wide, the data will be replicated in upper bytes.
// See section 2.1.4 Narrow IO Register Writes in the RP2040 datasheet.
// This means that identical 16-bit audio data will be written in both halves of the incoming PIO
// FIFO register. Thus we get mono-to-stereo conversion for the I2S output for free.
audio_dma_result result = audio_dma_setup_playback(
&self->dma,
sample,
loop,
false, // single channel
0, // audio channel
true, // output signed
bits_per_sample,
(uint32_t)&self->state_machine.pio->txf[self->state_machine.state_machine], // output register
self->state_machine.tx_dreq); // data request line
if (result == AUDIO_DMA_DMA_BUSY) {
common_hal_audiobusio_i2sout_stop(self);
mp_raise_RuntimeError(translate("No DMA channel found"));
} else if (result == AUDIO_DMA_MEMORY_ERROR) {
common_hal_audiobusio_i2sout_stop(self);
mp_raise_RuntimeError(translate("Unable to allocate buffers for signed conversion"));
}
self->playing = true;
}
void common_hal_audiobusio_i2sout_pause(audiobusio_i2sout_obj_t *self) {
audio_dma_pause(&self->dma);
}
void common_hal_audiobusio_i2sout_resume(audiobusio_i2sout_obj_t *self) {
// Maybe: Clear any overrun/underrun errors
audio_dma_resume(&self->dma);
}
bool common_hal_audiobusio_i2sout_get_paused(audiobusio_i2sout_obj_t *self) {
return audio_dma_get_paused(&self->dma);
}
void common_hal_audiobusio_i2sout_stop(audiobusio_i2sout_obj_t *self) {
audio_dma_stop(&self->dma);
common_hal_rp2pio_statemachine_stop(&self->state_machine);
self->playing = false;
}
bool common_hal_audiobusio_i2sout_get_playing(audiobusio_i2sout_obj_t *self) {
bool playing = audio_dma_get_playing(&self->dma);
if (!playing && self->playing) {
common_hal_audiobusio_i2sout_stop(self);
}
return playing;
}