circuitpython/ports/atmel-samd/common-hal/pulseio/PWMOut.c

403 lines
14 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "py/runtime.h"
#include "common-hal/pulseio/PWMOut.h"
#include "shared-bindings/pulseio/PWMOut.h"
#include "samd21_pins.h"
#undef ENABLE
# define _TCC_SIZE(n,unused) TPASTE3(TCC,n,_SIZE),
# define TCC_SIZES { MREPEAT(TCC_INST_NUM, _TCC_SIZE, 0) }
static uint32_t tcc_periods[TCC_INST_NUM];
static uint32_t tc_periods[TC_INST_NUM];
uint32_t target_tcc_frequencies[TCC_INST_NUM];
uint8_t tcc_refcount[TCC_INST_NUM];
const uint16_t prescaler[8] = {1, 2, 4, 8, 16, 64, 256, 1024};
// This bitmask keeps track of which channels of a TCC are currently claimed.
#ifdef SAMD21
uint8_t tcc_channels[3] = {0xf0, 0xfc, 0xfc};
uint8_t tcc_cc_num[3] = {4, 2, 2};
#endif
#ifdef SAMD51
uint8_t tcc_channels[5] = {0xc0, 0xf0, 0xf8, 0xfc, 0xfc};
uint8_t tcc_cc_num[5] = {6, 4, 3, 2, 2};
Tcc* tcc_insts[TCC_INST_NUM] = TCC_INSTS;
#endif
void pwmout_reset(void) {
// Reset all timers
for (int i = 0; i < TCC_INST_NUM; i++) {
target_timer_frequencies[i] = 0;
timer_refcount[i] = 0;
}
Tcc *tccs[TCC_INST_NUM] = TCC_INSTS;
for (int i = 0; i < TCC_INST_NUM; i++) {
// Disable the module before resetting it.
if (tccs[i]->CTRLA.bit.ENABLE == 1) {
tccs[i]->CTRLA.bit.ENABLE = 0;
while (tccs[i]->SYNCBUSY.bit.ENABLE == 1) {
}
}
uint8_t mask = 0xff;
for (uint8_t j = 0; j < tcc_cc_num[i]; j++) {
mask <<= 1;
}
tcc_channels[i] = 0xf0;
tccs[i]->CTRLA.bit.SWRST = 1;
}
Tc *tcs[TC_INST_NUM] = TC_INSTS;
for (int i = 0; i < TC_INST_NUM; i++) {
tcs[i]->COUNT16.CTRLA.bit.SWRST = 1;
while (tcs[i]->COUNT16.CTRLA.bit.SWRST == 1) {
}
}
}
static uint8_t tcc_channel(uint8_t timer_index, uint8_t wave_output) {
// For the SAMD51 this hardcodes the use of OTMX == 0x0, the output matrix mapping, which uses
// SAMD21-style modulo mapping.
return t->wave_output % tcc_cc_num[index];
}
bool channel_ok(const pin_timer_t* t, uint8_t index) {
uint8_t channel_bit = 1 << tcc_channel(index, t->wave_output);
return (!t->is_tc && ((tcc_channels[index] & channel_bit) == 0)) ||
t->is_tc;
}
static uint8_t timer_index(Tcc* base_timer_address) {
#ifdef SAMD21
return (base_timer_address - ((uint32_t) TCC0)) / 0x400;
#endif
// TCCs are scattered through the memory map of the SAMD51 so use a loop.
#ifdef SAMD51
for (uint8_t i = 0; i < TCC_INST_NUM; i++) {
if (base_timer_address == tcc_insts[i]) {
return i;
}
}
#endif
}
void common_hal_pulseio_pwmout_construct(pulseio_pwmout_obj_t* self,
const mcu_pin_obj_t* pin,
uint16_t duty,
uint32_t frequency,
bool variable_frequency) {
self->pin = pin;
self->variable_frequency = variable_frequency;
if (pin->primary_timer.tc == 0 && pin->secondary_timer.tc == 0) {
mp_raise_ValueError("Invalid pin");
}
if (frequency == 0 || frequency > 6000000) {
mp_raise_ValueError("Invalid PWM frequency");
}
uint16_t primary_timer_index = 0xff;
uint16_t secondary_timer_index = 0xff;
if (pin->primary_timer.tc != NULL) {
primary_timer_index = timer_index((uint32_t) pin->primary_timer.tcc);
}
if (pin->secondary_timer.tc != NULL) {
secondary_timer_index = timer_index((uint32_t) pin->secondary_timer.tcc);
}
// Figure out which timer we are using.
// First see if a timer is already going with the frequency we want and our
// channel is unused.
// NOTE(shawcroft): The enable bit is in the same position for TC and TCC so
// we treat them all as TCC for checking ENABLE.
const pin_timer_t* t = NULL;
uint8_t index = 0;
if (!variable_frequency &&
primary_timer_index != 0xff &&
target_timer_frequencies[primary_timer_index] == frequency &&
pin->primary_timer.tcc->CTRLA.bit.ENABLE == 1 &&
channel_ok(&pin->primary_timer, primary_timer_index)) {
t = &pin->primary_timer;
index = primary_timer_index;
self->tcc_instance.hw = t->tcc;
self->tcc_instance.double_buffering_enabled = true;
} else if (!variable_frequency &&
secondary_timer_index != 0xff &&
target_timer_frequencies[secondary_timer_index] == frequency &&
pin->secondary_timer.tcc->CTRLA.bit.ENABLE == 1 &&
channel_ok(&pin->secondary_timer, secondary_timer_index)) {
t = &pin->secondary_timer;
index = secondary_timer_index;
self->tcc_instance.hw = t->tcc;
self->tcc_instance.double_buffering_enabled = true;
} else {
// Pick an unused timer if available.
// Check the secondary timer first since its always a nicer TCC (when it
// exists)
if (pin->secondary_timer.tc != 0 &&
timer_refcount[secondary_timer_index] == 0 &&
pin->secondary_timer.tcc->CTRLA.bit.ENABLE == 0) {
t = &pin->secondary_timer;
index = secondary_timer_index;
} else if (pin->primary_timer.tc != 0 &&
(!pin->primary_timer.is_tc || pin->primary_timer.channel == 1) &&
timer_refcount[primary_timer_index] == 0) {
t = &pin->primary_timer;
index = primary_timer_index;
}
if (t == NULL) {
mp_raise_RuntimeError("All timers in use");
return;
}
uint8_t resolution = 0;
if (t->is_tc) {
resolution = 16;
} else {
// TCC resolution varies so look it up.
const uint8_t _tcc_sizes[TCC_INST_NUM] = TCC_SIZES;
resolution = _tcc_sizes[index];
}
// First determine the divisor that gets us the highest resolution.
uint32_t system_clock = system_cpu_clock_get_hz();
uint32_t top;
uint8_t divisor;
for (divisor = 0; divisor < 8; divisor++) {
top = (system_clock / prescaler[divisor] / frequency) - 1;
if (top < (1u << resolution)) {
break;
}
}
timer_periods[index] = top;
if (t->is_tc) {
// struct tc_config config_tc;
// tc_get_config_defaults(&config_tc);
//
// config_tc.counter_size = TC_COUNTER_SIZE_16BIT;
// config_tc.clock_prescaler = TC_CTRLA_PRESCALER(divisor);
// config_tc.wave_generation = TC_WAVE_GENERATION_MATCH_PWM;
// config_tc.counter_16_bit.compare_capture_channel[0] = top;
// enum status_code status = tc_init(&self->tc_instance, t->tc, &config_tc);
// if (status != STATUS_OK) {
// mp_raise_RuntimeError("Failed to init timer");
// }
// tc_enable(&self->tc_instance);
} else {
// struct tcc_config config_tcc;
// tcc_get_config_defaults(&config_tcc, t->tcc);
//
// config_tcc.counter.clock_prescaler = divisor;
// config_tcc.counter.period = top;
// config_tcc.compare.wave_generation = TCC_WAVE_GENERATION_SINGLE_SLOPE_PWM;
//
// enum status_code status = tcc_init(&self->tcc_instance, t->tcc, &config_tcc);
// if (status != STATUS_OK) {
// mp_raise_RuntimeError("Failed to init timer");
// }
// tcc_enable(&self->tcc_instance);
}
target_timer_frequencies[index] = frequency;
timer_refcount[index]++;
}
if (!t->is_tc) {
if (variable_frequency) {
// We're changing frequency so claim all of the channels.
tcc_channels[index] = 0xff;
} else {
tcc_channels[index] |= (1 << tcc_channel(index, t->channel));
}
}
self->timer = t;
// Connect the wave output to the outside world.
//struct system_pinmux_config pin_config;
//system_pinmux_get_config_defaults(&pin_config);
//pin_config.mux_position = &self->pin->primary_timer == t ? MUX_E : MUX_F;
//pin_config.direction = SYSTEM_PINMUX_PIN_DIR_OUTPUT;
//system_pinmux_pin_set_config(pin->pin, &pin_config);
common_hal_pulseio_pwmout_set_duty_cycle(self, duty);
}
bool common_hal_pulseio_pwmout_deinited(pulseio_pwmout_obj_t* self) {
return self->pin == mp_const_none;
}
void common_hal_pulseio_pwmout_deinit(pulseio_pwmout_obj_t* self) {
if (common_hal_pulseio_pwmout_deinited(self)) {
return;
}
const pin_timer_t* t = self->timer;
uint8_t index = (((uint32_t) t->tcc) - ((uint32_t) TCC0)) / 0x400;
timer_refcount[index]--;
if (!t->is_tc) {
tcc_channels[index] &= ~(1 << tcc_channel(index, t->wave_output));
}
if (timer_refcount[index] == 0) {
target_timer_frequencies[index] = 0;
if (t->is_tc) {
//tc_disable(&self->tc_instance);
} else {
if (t->tcc == TCC0) {
tcc_channels[index] = 0xf0;
} else {
tcc_channels[index] = 0xfc;
}
//tcc_disable(&self->tcc_instance);
//tcc_reset(&self->tcc_instance);
}
}
reset_pin(self->pin->pin);
self->pin = mp_const_none;
}
extern void common_hal_pulseio_pwmout_set_duty_cycle(pulseio_pwmout_obj_t* self, uint16_t duty) {
const pin_timer_t* t = self->timer;
uint8_t index;
if (t->is_tc) {
index = timer_index((uint32_t) self->timer->tc);
uint16_t adjusted_duty = timer_periods[index] * duty / 0xffff;
//tc_set_compare_value(&self->tc_instance, t->channel, adjusted_duty);
} else {
index = timer_index((uint32_t) self->timer->tcc);
uint32_t adjusted_duty = ((uint64_t) timer_periods[index]) * duty / 0xffff;
//tcc_set_compare_value(&self->tcc_instance, t->channel, adjusted_duty);
}
}
uint16_t common_hal_pulseio_pwmout_get_duty_cycle(pulseio_pwmout_obj_t* self) {
const pin_timer_t* t = self->timer;
if (t->is_tc) {
// while (tc_is_syncing(&self->tc_instance)) {
// /* Wait for sync */
// }
uint16_t cv = t->tc->COUNT16.CC[t->wave_output].reg;
return cv * 0xffff / timer_periods[timer_index((uint32_t) self->timer->tc)];
} else {
uint8_t channel = tcc_channel(timer_index(t->tcc), t->wave_output);
uint32_t cv = 0;
if ((t->tcc->STATUS.vec.CCBV & (1 << channel)) != 0) {
cv = t->tcc->CCB[channel].reg;
} else {
cv = t->tcc->CC[channel].reg;
}
uint32_t duty_cycle = ((uint64_t) cv) * 0xffff / timer_periods[timer_index(t->tcc)];
return duty_cycle;
}
}
void common_hal_pulseio_pwmout_set_frequency(pulseio_pwmout_obj_t* self,
uint32_t frequency) {
if (frequency == 0 || frequency > 6000000) {
mp_raise_ValueError("Invalid PWM frequency");
}
const pin_timer_t* t = self->timer;
uint8_t resolution;
if (t->is_tc) {
resolution = 16;
} else {
resolution = 24;
}
uint32_t system_clock = system_cpu_clock_get_hz();
uint32_t new_top;
uint8_t new_divisor;
for (new_divisor = 0; new_divisor < 8; new_divisor++) {
new_top = (system_clock / prescaler[new_divisor] / frequency) - 1;
if (new_top < (1u << resolution)) {
break;
}
}
uint16_t old_duty = common_hal_pulseio_pwmout_get_duty_cycle(self);
uint8_t old_divisor;
uint8_t index;
if (t->is_tc) {
index = timer_index(t->tc);
old_divisor = t->tc->COUNT16.CTRLA.bit.PRESCALER;
} else {
index = timer_index(t->tcc);
old_divisor = t->tcc->CTRLA.bit.PRESCALER;
}
if (new_divisor != old_divisor) {
if (t->is_tc) {
//tc_disable(&self->tc_instance);
t->tc->COUNT16.CTRLA.bit.PRESCALER = new_divisor;
//tc_enable(&self->tc_instance);
} else {
//tcc_disable(&self->tcc_instance);
t->tcc->CTRLA.bit.PRESCALER = new_divisor;
//tcc_enable(&self->tcc_instance);
}
}
timer_periods[index] = new_top;
if (t->is_tc) {
// while (tc_is_syncing(&self->tc_instance)) {
// /* Wait for sync */
// }
t->tc->COUNT16.CC[0].reg = new_top;
} else {
//tcc_set_top_value(&self->tcc_instance, new_top);
}
common_hal_pulseio_pwmout_set_duty_cycle(self, old_duty);
}
uint32_t common_hal_pulseio_pwmout_get_frequency(pulseio_pwmout_obj_t* self) {
uint32_t system_clock = system_cpu_clock_get_hz();
const pin_timer_t* t = self->timer;
uint8_t index;
uint8_t divisor;
if (t->is_tc) {
index = timer_index((uint32_t) self->timer->tc);
divisor = t->tc->COUNT16.CTRLA.bit.PRESCALER;
} else {
index = timer_index((uint32_t) self->timer->tcc);
divisor = t->tcc->CTRLA.bit.PRESCALER;
}
uint32_t top = timer_periods[index];
return (system_clock / prescaler[divisor]) / (top + 1);
}
bool common_hal_pulseio_pwmout_get_variable_frequency(pulseio_pwmout_obj_t* self) {
return self->variable_frequency;
}