738 lines
21 KiB
C

/*****************************************************************************
*
* spi.c - CC3000 Host Driver Implementation.
* Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
* Adapted for use with the Arduino/AVR by KTOWN (Kevin Townsend)
* & Limor Fried for Adafruit Industries
* This library works with the Adafruit CC3000 breakout
* ----> https://www.adafruit.com/products/1469
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include <stdint.h>
#include <string.h> // for memset
#include "ccspi.h"
#include "hci.h"
#include "netapp.h"
#include "evnt_handler.h"
#include "cc3000_common.h"
#include "ccdebug.h"
#include "pybcc3k.h"
extern uint8_t g_csPin, g_irqPin, g_vbatPin, g_IRQnum, g_SPIspeed;
#define READ (3)
#define WRITE (1)
#define HI(value) (((value) & 0xFF00) >> 8)
#define LO(value) ((value) & 0x00FF)
#define HEADERS_SIZE_EVNT (SPI_HEADER_SIZE + 5)
#define SPI_HEADER_SIZE (5)
#define eSPI_STATE_POWERUP (0)
#define eSPI_STATE_INITIALIZED (1)
#define eSPI_STATE_IDLE (2)
#define eSPI_STATE_WRITE_IRQ (3)
#define eSPI_STATE_WRITE_FIRST_PORTION (4)
#define eSPI_STATE_WRITE_EOT (5)
#define eSPI_STATE_READ_IRQ (6)
#define eSPI_STATE_READ_FIRST_PORTION (7)
#define eSPI_STATE_READ_EOT (8)
// CC3000 chip select
#define CC3000_ASSERT_CS() pyb_cc3000_set_cs(0)
// CC3000 chip deselect
#define CC3000_DEASSERT_CS() pyb_cc3000_set_cs(1)
/* smartconfig flags (defined in Adafruit_CC3000.cpp) */
// extern unsigned long ulSmartConfigFinished, ulCC3000DHCP;
typedef struct
{
gcSpiHandleRx SPIRxHandler;
unsigned short usTxPacketLength;
unsigned short usRxPacketLength;
unsigned long ulSpiState;
unsigned char *pTxPacket;
unsigned char *pRxPacket;
} tSpiInformation;
tSpiInformation sSpiInformation;
/* Static buffer for 5 bytes of SPI HEADER */
unsigned char tSpiReadHeader[] = {READ, 0, 0, 0, 0};
void SpiWriteDataSynchronous(unsigned char *data, unsigned short size);
void SpiWriteAsync(const unsigned char *data, unsigned short size);
void SpiPauseSpi(void);
void SpiResumeSpi(void);
void SSIContReadOperation(void);
void cc3k_int_poll(void);
// The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
// for the purpose of detection of the overrun. The location of the memory where the magic number
// resides shall never be written. In case it is written - the overrun occured and either recevie function
// or send function will stuck forever.
#define CC3000_BUFFER_MAGIC_NUMBER (0xDE)
char spi_buffer[CC3000_RX_BUFFER_SIZE];
unsigned char wlan_tx_buffer[CC3000_TX_BUFFER_SIZE];
static volatile char ccspi_is_in_irq = 0;
static volatile char ccspi_int_enabled = 0;
/* Mandatory functions are:
- SpiOpen
- SpiWrite
- SpiRead
- SpiClose
- SpiResumeSpi
- ReadWlanInterruptPin
- WlanInterruptEnable
- WlanInterruptDisable
- WriteWlanPin
*/
void SpiInit(void)
{
pyb_cc3000_spi_init();
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SpiClose(void)
{
DEBUGPRINT_F("\tCC3000: SpiClose");
if (sSpiInformation.pRxPacket)
{
sSpiInformation.pRxPacket = 0;
}
/* Disable Interrupt in GPIOA module... */
tSLInformation.WlanInterruptDisable();
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SpiOpen(gcSpiHandleRx pfRxHandler)
{
DEBUGPRINT_F("\tCC3000: SpiOpen");
sSpiInformation.ulSpiState = eSPI_STATE_POWERUP;
memset(spi_buffer, 0, sizeof(spi_buffer));
memset(wlan_tx_buffer, 0, sizeof(spi_buffer));
sSpiInformation.SPIRxHandler = pfRxHandler;
sSpiInformation.usTxPacketLength = 0;
sSpiInformation.pTxPacket = NULL;
sSpiInformation.pRxPacket = (unsigned char *)spi_buffer;
sSpiInformation.usRxPacketLength = 0;
spi_buffer[CC3000_RX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
/* Enable interrupt on the GPIO pin of WLAN IRQ */
tSLInformation.WlanInterruptEnable();
DEBUGPRINT_F("\tCC3000: Finished SpiOpen\n\r");
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
#if 0
int init_spi(void)
{
DEBUGPRINT_F("\tCC3000: init_spi\n\r");
/* Set POWER_EN pin to output and disable the CC3000 by default */
pinMode(g_vbatPin, OUTPUT);
digitalWrite(g_vbatPin, 0);
delay(500);
/* Set CS pin to output (don't de-assert yet) */
pinMode(g_csPin, OUTPUT);
/* Set interrupt/gpio pin to input */
#if defined(INPUT_PULLUP)
pinMode(g_irqPin, INPUT_PULLUP);
#else
pinMode(g_irqPin, INPUT);
digitalWrite(g_irqPin, HIGH); // w/weak pullup
#endif
/* Initialise SPI (Mode 1) */
SPI.begin();
SPI.setDataMode(SPI_MODE1);
SPI.setBitOrder(MSBFIRST);
SPI.setClockDivider(g_SPIspeed);
// Newly-initialized SPI is in the same state that ASSERT_CS will set it
// to. Invoke DEASSERT (which also restores SPI registers) so the next
// ASSERT call won't clobber the ccspi_old* values -- we need those!
CC3000_DEASSERT_CS();
/* ToDo: Configure IRQ interrupt! */
DEBUGPRINT_F("\tCC3000: Finished init_spi\n\r");
return(ESUCCESS);
}
#endif
/**************************************************************************/
/*!
*/
/**************************************************************************/
long SpiFirstWrite(unsigned char *ucBuf, unsigned short usLength)
{
DEBUGPRINT_F("\tCC3000: SpiWriteFirst\n\r");
/* Workaround for the first transaction */
CC3000_ASSERT_CS();
/* delay (stay low) for ~50us */
pyb_delay_us(50);
/* SPI writes first 4 bytes of data */
SpiWriteDataSynchronous(ucBuf, 4);
pyb_delay_us(50);
SpiWriteDataSynchronous(ucBuf + 4, usLength - 4);
/* From this point on - operate in a regular manner */
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
CC3000_DEASSERT_CS();
return(0);
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
long SpiWrite(unsigned char *pUserBuffer, unsigned short usLength)
{
unsigned char ucPad = 0;
DEBUGPRINT_F("\tCC3000: SpiWrite\n\r");
/* Figure out the total length of the packet in order to figure out if there is padding or not */
if(!(usLength & 0x0001))
{
ucPad++;
}
pUserBuffer[0] = WRITE;
pUserBuffer[1] = HI(usLength + ucPad);
pUserBuffer[2] = LO(usLength + ucPad);
pUserBuffer[3] = 0;
pUserBuffer[4] = 0;
usLength += (SPI_HEADER_SIZE + ucPad);
/* The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
* for the purpose of overrun detection. If the magic number is overwritten - buffer overrun
* occurred - and we will be stuck here forever! */
if (wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
{
DEBUGPRINT_F("\tCC3000: Error - No magic number found in SpiWrite\n\r");
while (1);
}
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
{
while (sSpiInformation.ulSpiState != eSPI_STATE_INITIALIZED);
}
if (sSpiInformation.ulSpiState == eSPI_STATE_INITIALIZED)
{
/* This is time for first TX/RX transactions over SPI: the IRQ is down - so need to send read buffer size command */
SpiFirstWrite(pUserBuffer, usLength);
}
else
{
/* We need to prevent here race that can occur in case two back to back packets are sent to the
* device, so the state will move to IDLE and once again to not IDLE due to IRQ */
tSLInformation.WlanInterruptDisable();
while (sSpiInformation.ulSpiState != eSPI_STATE_IDLE);
sSpiInformation.ulSpiState = eSPI_STATE_WRITE_IRQ;
sSpiInformation.pTxPacket = pUserBuffer;
sSpiInformation.usTxPacketLength = usLength;
/* Assert the CS line and wait till SSI IRQ line is active and then initialize write operation */
CC3000_ASSERT_CS();
/* Re-enable IRQ - if it was not disabled - this is not a problem... */
tSLInformation.WlanInterruptEnable();
/* Check for a missing interrupt between the CS assertion and enabling back the interrupts */
if (tSLInformation.ReadWlanInterruptPin() == 0)
{
SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
CC3000_DEASSERT_CS();
}
}
/* Due to the fact that we are currently implementing a blocking situation
* here we will wait till end of transaction */
while (eSPI_STATE_IDLE != sSpiInformation.ulSpiState);
return(0);
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SpiWriteDataSynchronous(unsigned char *data, unsigned short size)
{
int bSend = 0, bRecv = 0;
while (bSend<size || bRecv<size) {
int r = pyb_cc3000_spi_send((bSend<size)?data[bSend]:-1);
bSend++;
if (bSend>0 && r>=0) bRecv++;
}
pyb_delay_us(10); // because of final clock pulse
DEBUG_printf("SpiWriteDataSynchronous: data=%p size=%u bSend=%d bRecv=%d [%x %x %x %x]\n", data, size, bSend, bRecv, data[0], data[1], data[2], data[3]);
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SpiReadDataSynchronous(unsigned char *data, unsigned short size)
{
int bSend = 0, bRecv = 0;
while (bSend<size || bRecv<size) {
int r = pyb_cc3000_spi_send((bSend<size)?READ:-1);
bSend++;
if (bSend>0 && r>=0) data[bRecv++] = r;
}
pyb_delay_us(10); // because of final clock pulse
DEBUG_printf("SpiReadDataSynchronous: data=%p size=%u bSend=%d bRecv=%d [%x %x %x %x]\n", data, size, bSend, bRecv, data[0], data[1], data[2], data[3]);
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SpiReadHeader(void)
{
DEBUGPRINT_F("\tCC3000: SpiReadHeader\n\r");
SpiReadDataSynchronous(sSpiInformation.pRxPacket, HEADERS_SIZE_EVNT);
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
long SpiReadDataCont(void)
{
long data_to_recv;
unsigned char *evnt_buff, type;
DEBUGPRINT_F("\tCC3000: SpiReadDataCont\n\r");
/* Determine what type of packet we have */
evnt_buff = sSpiInformation.pRxPacket;
data_to_recv = 0;
STREAM_TO_UINT8((uint8_t *)(evnt_buff + SPI_HEADER_SIZE), HCI_PACKET_TYPE_OFFSET, type);
switch(type)
{
case HCI_TYPE_DATA:
{
/* We need to read the rest of data.. */
STREAM_TO_UINT16((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_DATA_LENGTH_OFFSET, data_to_recv);
if (!((HEADERS_SIZE_EVNT + data_to_recv) & 1))
{
data_to_recv++;
}
if (data_to_recv)
{
SpiReadDataSynchronous(evnt_buff + HEADERS_SIZE_EVNT, data_to_recv);
}
break;
}
case HCI_TYPE_EVNT:
{
/* Calculate the rest length of the data */
STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_EVENT_LENGTH_OFFSET, data_to_recv);
data_to_recv -= 1;
/* Add padding byte if needed */
if ((HEADERS_SIZE_EVNT + data_to_recv) & 1)
{
data_to_recv++;
}
if (data_to_recv)
{
SpiReadDataSynchronous(evnt_buff + HEADERS_SIZE_EVNT, data_to_recv);
}
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
break;
}
}
return (0);
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SpiPauseSpi(void)
{
DEBUGPRINT_F("\tCC3000: SpiPauseSpi\n\r");
ccspi_int_enabled = 0;
pyb_cc3000_pause_spi();
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SpiResumeSpi(void)
{
DEBUGPRINT_F("\tCC3000: SpiResumeSpi\n\r");
ccspi_int_enabled = 1;
pyb_cc3000_resume_spi();
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SpiTriggerRxProcessing(void)
{
DEBUGPRINT_F("\tCC3000: SpiTriggerRxProcessing\n\r");
/* Trigger Rx processing */
SpiPauseSpi();
CC3000_DEASSERT_CS();
//DEBUGPRINT_F("Magic?\n\r");
/* The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
* for the purpose of detection of the overrun. If the magic number is overriten - buffer overrun
* occurred - and we will stuck here forever! */
if (sSpiInformation.pRxPacket[CC3000_RX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
{
/* You've got problems if you're here! */
DEBUGPRINT_F("\tCC3000: ERROR - magic number missing!\n\r");
while (1);
}
//DEBUGPRINT_F("OK!\n\r");
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
sSpiInformation.SPIRxHandler(sSpiInformation.pRxPacket + SPI_HEADER_SIZE);
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SSIContReadOperation(void)
{
DEBUGPRINT_F("\tCC3000: SpiContReadOperation\n\r");
/* The header was read - continue with the payload read */
if (!SpiReadDataCont())
{
/* All the data was read - finalize handling by switching to teh task
* and calling from task Event Handler */
//DEBUGPRINT_F("SPItrig\n\r");
SpiTriggerRxProcessing();
}
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void WriteWlanPin( unsigned char val )
{
#if 0
if (DEBUG_MODE)
{
DEBUGPRINT_F("\tCC3000: WriteWlanPin - ");
DEBUGPRINT_DEC(val);
DEBUGPRINT_F("\n\r");
delay(1);
}
if (val)
{
digitalWrite(g_vbatPin, HIGH);
}
else
{
digitalWrite(g_vbatPin, LOW);
}
#endif
pyb_cc3000_set_en(val == WLAN_ENABLE);
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
long ReadWlanInterruptPin(void)
{
DEBUGPRINT_F("\tCC3000: ReadWlanInterruptPin - ");
DEBUGPRINT_DEC(digitalRead(g_irqPin));
DEBUGPRINT_F("\n\r");
return pyb_cc3000_get_irq();
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void WlanInterruptEnable()
{
DEBUGPRINT_F("\tCC3000: WlanInterruptEnable.\n\r");
// delay(100);
ccspi_int_enabled = 1;
pyb_cc3000_enable_irq();
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void WlanInterruptDisable()
{
DEBUGPRINT_F("\tCC3000: WlanInterruptDisable\n\r");
ccspi_int_enabled = 0;
pyb_cc3000_disable_irq();
}
//*****************************************************************************
//
//! sendDriverPatch
//!
//! @param pointer to the length
//!
//! @return none
//!
//! @brief The function returns a pointer to the driver patch:
//! since there is no patch in the host - it returns 0
//
//*****************************************************************************
char *sendDriverPatch(unsigned long *Length) {
*Length = 0;
return NULL;
}
//*****************************************************************************
//
//! sendBootLoaderPatch
//!
//! @param pointer to the length
//!
//! @return none
//!
//! @brief The function returns a pointer to the boot loader patch:
//! since there is no patch in the host - it returns 0
//
//*****************************************************************************
char *sendBootLoaderPatch(unsigned long *Length) {
*Length = 0;
return NULL;
}
//*****************************************************************************
//
//! sendWLFWPatch
//!
//! @param pointer to the length
//!
//! @return none
//!
//! @brief The function returns a pointer to the FW patch:
//! since there is no patch in the host - it returns 0
//
//*****************************************************************************
char *sendWLFWPatch(unsigned long *Length) {
*Length = 0;
return NULL;
}
/**************************************************************************/
/*!
*/
/**************************************************************************/
void SpiIntGPIOHandler(void)
{
DEBUG_printf("SpiIntGPIOHandler\n");
ccspi_is_in_irq = 1;
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
{
//This means IRQ line was low call a callback of HCI Layer to inform
//on event
sSpiInformation.ulSpiState = eSPI_STATE_INITIALIZED;
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_IDLE)
{
sSpiInformation.ulSpiState = eSPI_STATE_READ_IRQ;
/* IRQ line goes down - we are start reception */
CC3000_ASSERT_CS();
// Wait for TX/RX Compete which will come as DMA interrupt
SpiReadHeader();
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
SSIContReadOperation();
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_WRITE_IRQ)
{
SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
CC3000_DEASSERT_CS();
}
ccspi_is_in_irq = 0;
}
#if 0
void SPI_IRQ(void)
{
ccspi_is_in_irq = 1;
DEBUGPRINT_F("\tCC3000: Entering SPI_IRQ\n\r");
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
{
/* IRQ line was low ... perform a callback on the HCI Layer */
sSpiInformation.ulSpiState = eSPI_STATE_INITIALIZED;
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_IDLE)
{
//DEBUGPRINT_F("IDLE\n\r");
sSpiInformation.ulSpiState = eSPI_STATE_READ_IRQ;
/* IRQ line goes down - start reception */
CC3000_ASSERT_CS();
// Wait for TX/RX Compete which will come as DMA interrupt
SpiReadHeader();
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
//DEBUGPRINT_F("SSICont\n\r");
SSIContReadOperation();
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_WRITE_IRQ)
{
SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
CC3000_DEASSERT_CS();
}
DEBUGPRINT_F("\tCC3000: Leaving SPI_IRQ\n\r");
ccspi_is_in_irq = 0;
return;
}
#endif
//*****************************************************************************
//
//! cc3k_int_poll
//!
//! \brief checks if the interrupt pin is low
//! just in case the hardware missed a falling edge
//! function is in ccspi.cpp
//
//*****************************************************************************
void cc3k_int_poll()
{
if (pyb_cc3000_get_irq() == 0 && ccspi_is_in_irq == 0 && ccspi_int_enabled != 0) {
SpiIntGPIOHandler();
}
}