circuitpython/py/compile.c
Damien George e920bab976 py/emitinline: Move common code for end of final pass to compiler.
This patch moves some common code from the individual inline assemblers to
the compiler, the code that calls the emit-glue to assign the machine code
to the functions scope.
2016-12-09 21:23:17 +11:00

3516 lines
139 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2015 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/scope.h"
#include "py/emit.h"
#include "py/compile.h"
#include "py/runtime.h"
#include "py/asmbase.h"
#if MICROPY_ENABLE_COMPILER
// TODO need to mangle __attr names
typedef enum {
#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
#include "py/grammar.h"
#undef DEF_RULE
PN_maximum_number_of,
PN_string, // special node for non-interned string
PN_bytes, // special node for non-interned bytes
PN_const_object, // special node for a constant, generic Python object
} pn_kind_t;
#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE
#if NEED_METHOD_TABLE
// we need a method table to do the lookup for the emitter functions
#define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num))
#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst))
#else
// if we only have the bytecode emitter enabled then we can do a direct call to the functions
#define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num))
#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst))
#endif
#if MICROPY_EMIT_NATIVE
// define a macro to access external native emitter
#if MICROPY_EMIT_X64
#define NATIVE_EMITTER(f) emit_native_x64_##f
#elif MICROPY_EMIT_X86
#define NATIVE_EMITTER(f) emit_native_x86_##f
#elif MICROPY_EMIT_THUMB
#define NATIVE_EMITTER(f) emit_native_thumb_##f
#elif MICROPY_EMIT_ARM
#define NATIVE_EMITTER(f) emit_native_arm_##f
#elif MICROPY_EMIT_XTENSA
#define NATIVE_EMITTER(f) emit_native_xtensa_##f
#else
#error "unknown native emitter"
#endif
#endif
#if MICROPY_EMIT_INLINE_ASM
// define macros for inline assembler
#if MICROPY_EMIT_INLINE_THUMB
#define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb
#define ASM_EMITTER(f) emit_inline_thumb_##f
#elif MICROPY_EMIT_INLINE_XTENSA
#define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa
#define ASM_EMITTER(f) emit_inline_xtensa_##f
#else
#error "unknown asm emitter"
#endif
#endif
#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))
// elements in this struct are ordered to make it compact
typedef struct _compiler_t {
qstr source_file;
uint8_t is_repl;
uint8_t pass; // holds enum type pass_kind_t
uint8_t func_arg_is_super; // used to compile special case of super() function call
uint8_t have_star;
// try to keep compiler clean from nlr
mp_obj_t compile_error; // set to an exception object if there's an error
size_t compile_error_line; // set to best guess of line of error
uint next_label;
uint16_t num_dict_params;
uint16_t num_default_params;
uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
uint16_t continue_label;
uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
uint16_t break_continue_except_level;
scope_t *scope_head;
scope_t *scope_cur;
emit_t *emit; // current emitter
#if NEED_METHOD_TABLE
const emit_method_table_t *emit_method_table; // current emit method table
#endif
#if MICROPY_EMIT_INLINE_ASM
emit_inline_asm_t *emit_inline_asm; // current emitter for inline asm
const emit_inline_asm_method_table_t *emit_inline_asm_method_table; // current emit method table for inline asm
#endif
} compiler_t;
STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) {
// if the line of the error is unknown then try to update it from the pn
if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) {
comp->compile_error_line = ((mp_parse_node_struct_t*)pn)->source_line;
}
}
STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, const char *msg) {
// only register the error if there has been no other error
if (comp->compile_error == MP_OBJ_NULL) {
comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
compile_error_set_line(comp, pn);
}
}
STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra);
STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind);
STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn);
STATIC uint comp_next_label(compiler_t *comp) {
return comp->next_label++;
}
STATIC void compile_increase_except_level(compiler_t *comp) {
comp->cur_except_level += 1;
if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
comp->scope_cur->exc_stack_size = comp->cur_except_level;
}
}
STATIC void compile_decrease_except_level(compiler_t *comp) {
assert(comp->cur_except_level > 0);
comp->cur_except_level -= 1;
}
STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options);
scope->parent = comp->scope_cur;
scope->next = NULL;
if (comp->scope_head == NULL) {
comp->scope_head = scope;
} else {
scope_t *s = comp->scope_head;
while (s->next != NULL) {
s = s->next;
}
s->next = scope;
}
return scope;
}
typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn);
STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
f(comp, pns->nodes[i]);
}
} else if (!MP_PARSE_NODE_IS_NULL(pn)) {
f(comp, pn);
}
}
STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
compile_node(comp, pns->nodes[i]);
if (comp->compile_error != MP_OBJ_NULL) {
// add line info for the error in case it didn't have a line number
compile_error_set_line(comp, pns->nodes[i]);
return;
}
}
}
STATIC void compile_load_id(compiler_t *comp, qstr qst) {
if (comp->pass == MP_PASS_SCOPE) {
mp_emit_common_get_id_for_load(comp->scope_cur, qst);
} else {
#if NEED_METHOD_TABLE
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
#else
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
#endif
}
}
STATIC void compile_store_id(compiler_t *comp, qstr qst) {
if (comp->pass == MP_PASS_SCOPE) {
mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
} else {
#if NEED_METHOD_TABLE
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
#else
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
#endif
}
}
STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
if (comp->pass == MP_PASS_SCOPE) {
mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
} else {
#if NEED_METHOD_TABLE
mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
#else
mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
#endif
}
}
STATIC void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) {
int total = 0;
if (!MP_PARSE_NODE_IS_NULL(pn)) {
compile_node(comp, pn);
total += 1;
}
if (pns_list != NULL) {
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list);
for (int i = 0; i < n; i++) {
compile_node(comp, pns_list->nodes[i]);
}
total += n;
}
EMIT_ARG(build_tuple, total);
}
STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) {
// a simple tuple expression
c_tuple(comp, MP_PARSE_NODE_NULL, pns);
}
STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) {
if (mp_parse_node_is_const_false(pn)) {
if (jump_if == false) {
EMIT_ARG(jump, label);
}
return;
} else if (mp_parse_node_is_const_true(pn)) {
if (jump_if == true) {
EMIT_ARG(jump, label);
}
return;
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
if (jump_if == false) {
and_or_logic1:;
uint label2 = comp_next_label(comp);
for (int i = 0; i < n - 1; i++) {
c_if_cond(comp, pns->nodes[i], !jump_if, label2);
}
c_if_cond(comp, pns->nodes[n - 1], jump_if, label);
EMIT_ARG(label_assign, label2);
} else {
and_or_logic2:
for (int i = 0; i < n; i++) {
c_if_cond(comp, pns->nodes[i], jump_if, label);
}
}
return;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
if (jump_if == false) {
goto and_or_logic2;
} else {
goto and_or_logic1;
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
c_if_cond(comp, pns->nodes[0], !jump_if, label);
return;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) {
// cond is something in parenthesis
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// empty tuple, acts as false for the condition
if (jump_if == false) {
EMIT_ARG(jump, label);
}
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
// non-empty tuple, acts as true for the condition
if (jump_if == true) {
EMIT_ARG(jump, label);
}
}
return;
}
}
// nothing special, fall back to default compiling for node and jump
compile_node(comp, pn);
EMIT_ARG(pop_jump_if, jump_if, label);
}
typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind);
STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) {
if (assign_kind != ASSIGN_AUG_STORE) {
compile_node(comp, pns->nodes[0]);
}
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
if (assign_kind != ASSIGN_AUG_STORE) {
for (int i = 0; i < n - 1; i++) {
compile_node(comp, pns1->nodes[i]);
}
}
assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
}
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
if (assign_kind == ASSIGN_AUG_STORE) {
EMIT(rot_three);
EMIT(store_subscr);
} else {
compile_node(comp, pns1->nodes[0]);
if (assign_kind == ASSIGN_AUG_LOAD) {
EMIT(dup_top_two);
EMIT(load_subscr);
} else {
EMIT(store_subscr);
}
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
if (assign_kind == ASSIGN_AUG_LOAD) {
EMIT(dup_top);
EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
} else {
if (assign_kind == ASSIGN_AUG_STORE) {
EMIT(rot_two);
}
EMIT_ARG(store_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
}
} else {
goto cannot_assign;
}
} else {
goto cannot_assign;
}
return;
cannot_assign:
compile_syntax_error(comp, (mp_parse_node_t)pns, "can't assign to expression");
}
// we need to allow for a caller passing in 1 initial node (node_head) followed by an array of nodes (nodes_tail)
STATIC void c_assign_tuple(compiler_t *comp, mp_parse_node_t node_head, uint num_tail, mp_parse_node_t *nodes_tail) {
uint num_head = (node_head == MP_PARSE_NODE_NULL) ? 0 : 1;
// look for star expression
uint have_star_index = -1;
if (num_head != 0 && MP_PARSE_NODE_IS_STRUCT_KIND(node_head, PN_star_expr)) {
EMIT_ARG(unpack_ex, 0, num_tail);
have_star_index = 0;
}
for (uint i = 0; i < num_tail; i++) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) {
if (have_star_index == (uint)-1) {
EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1);
have_star_index = num_head + i;
} else {
compile_syntax_error(comp, nodes_tail[i], "multiple *x in assignment");
return;
}
}
}
if (have_star_index == (uint)-1) {
EMIT_ARG(unpack_sequence, num_head + num_tail);
}
if (num_head != 0) {
if (0 == have_star_index) {
c_assign(comp, ((mp_parse_node_struct_t*)node_head)->nodes[0], ASSIGN_STORE);
} else {
c_assign(comp, node_head, ASSIGN_STORE);
}
}
for (uint i = 0; i < num_tail; i++) {
if (num_head + i == have_star_index) {
c_assign(comp, ((mp_parse_node_struct_t*)nodes_tail[i])->nodes[0], ASSIGN_STORE);
} else {
c_assign(comp, nodes_tail[i], ASSIGN_STORE);
}
}
}
// assigns top of stack to pn
STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) {
assert(!MP_PARSE_NODE_IS_NULL(pn));
if (MP_PARSE_NODE_IS_LEAF(pn)) {
if (MP_PARSE_NODE_IS_ID(pn)) {
qstr arg = MP_PARSE_NODE_LEAF_ARG(pn);
switch (assign_kind) {
case ASSIGN_STORE:
case ASSIGN_AUG_STORE:
compile_store_id(comp, arg);
break;
case ASSIGN_AUG_LOAD:
default:
compile_load_id(comp, arg);
break;
}
} else {
compile_syntax_error(comp, pn, "can't assign to literal");
return;
}
} else {
// pn must be a struct
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
case PN_atom_expr_normal:
// lhs is an index or attribute
c_assign_atom_expr(comp, pns, assign_kind);
break;
case PN_testlist_star_expr:
case PN_exprlist:
// lhs is a tuple
if (assign_kind != ASSIGN_STORE) {
goto bad_aug;
}
c_assign_tuple(comp, MP_PARSE_NODE_NULL, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
break;
case PN_atom_paren:
// lhs is something in parenthesis
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// empty tuple
goto cannot_assign;
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
if (assign_kind != ASSIGN_STORE) {
goto bad_aug;
}
pns = (mp_parse_node_struct_t*)pns->nodes[0];
goto testlist_comp;
}
break;
case PN_atom_bracket:
// lhs is something in brackets
if (assign_kind != ASSIGN_STORE) {
goto bad_aug;
}
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// empty list, assignment allowed
c_assign_tuple(comp, MP_PARSE_NODE_NULL, 0, NULL);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
pns = (mp_parse_node_struct_t*)pns->nodes[0];
goto testlist_comp;
} else {
// brackets around 1 item
c_assign_tuple(comp, pns->nodes[0], 0, NULL);
}
break;
default:
goto cannot_assign;
}
return;
testlist_comp:
// lhs is a sequence
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
// sequence of one item, with trailing comma
assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
c_assign_tuple(comp, pns->nodes[0], 0, NULL);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
// sequence of many items
uint n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2);
c_assign_tuple(comp, pns->nodes[0], n, pns2->nodes);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
goto cannot_assign;
} else {
// sequence with 2 items
goto sequence_with_2_items;
}
} else {
// sequence with 2 items
sequence_with_2_items:
c_assign_tuple(comp, MP_PARSE_NODE_NULL, 2, pns->nodes);
}
return;
}
return;
cannot_assign:
compile_syntax_error(comp, pn, "can't assign to expression");
return;
bad_aug:
compile_syntax_error(comp, pn, "illegal expression for augmented assignment");
}
// stuff for lambda and comprehensions and generators:
// if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
// if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
// if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
assert(n_pos_defaults >= 0);
assert(n_kw_defaults >= 0);
// set flags
if (n_kw_defaults > 0) {
this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
}
this_scope->num_def_pos_args = n_pos_defaults;
// make closed over variables, if any
// ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
int nfree = 0;
if (comp->scope_cur->kind != SCOPE_MODULE) {
for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
id_info_t *id = &comp->scope_cur->id_info[i];
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
for (int j = 0; j < this_scope->id_info_len; j++) {
id_info_t *id2 = &this_scope->id_info[j];
if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
// in Micro Python we load closures using LOAD_FAST
EMIT_LOAD_FAST(id->qst, id->local_num);
nfree += 1;
}
}
}
}
}
// make the function/closure
if (nfree == 0) {
EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
} else {
EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
}
}
STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_star)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_varargslist_star)) {
comp->have_star = true;
/* don't need to distinguish bare from named star
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// bare star
} else {
// named star
}
*/
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_dbl_star)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_varargslist_dbl_star)) {
// named double star
// TODO do we need to do anything with this?
} else {
mp_parse_node_t pn_id;
mp_parse_node_t pn_colon;
mp_parse_node_t pn_equal;
if (MP_PARSE_NODE_IS_ID(pn)) {
// this parameter is just an id
pn_id = pn;
pn_colon = MP_PARSE_NODE_NULL;
pn_equal = MP_PARSE_NODE_NULL;
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_typedargslist_name)) {
// this parameter has a colon and/or equal specifier
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
pn_id = pns->nodes[0];
pn_colon = pns->nodes[1];
pn_equal = pns->nodes[2];
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_varargslist_name)); // should be
// this parameter has an equal specifier
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
pn_id = pns->nodes[0];
pn_equal = pns->nodes[1];
}
if (MP_PARSE_NODE_IS_NULL(pn_equal)) {
// this parameter does not have a default value
// check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
if (!comp->have_star && comp->num_default_params != 0) {
compile_syntax_error(comp, pn, "non-default argument follows default argument");
return;
}
} else {
// this parameter has a default value
// in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why
if (comp->have_star) {
comp->num_dict_params += 1;
// in Micro Python we put the default dict parameters into a dictionary using the bytecode
if (comp->num_dict_params == 1) {
// in Micro Python we put the default positional parameters into a tuple using the bytecode
// we need to do this here before we start building the map for the default keywords
if (comp->num_default_params > 0) {
EMIT_ARG(build_tuple, comp->num_default_params);
} else {
EMIT(load_null); // sentinel indicating empty default positional args
}
// first default dict param, so make the map
EMIT_ARG(build_map, 0);
}
// compile value then key, then store it to the dict
compile_node(comp, pn_equal);
EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id));
EMIT(store_map);
} else {
comp->num_default_params += 1;
compile_node(comp, pn_equal);
}
}
// TODO pn_colon not implemented
(void)pn_colon;
}
}
STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) {
// When we call compile_funcdef_lambdef_param below it can compile an arbitrary
// expression for default arguments, which may contain a lambda. The lambda will
// call here in a nested way, so we must save and restore the relevant state.
bool orig_have_star = comp->have_star;
uint16_t orig_num_dict_params = comp->num_dict_params;
uint16_t orig_num_default_params = comp->num_default_params;
// compile default parameters
comp->have_star = false;
comp->num_dict_params = 0;
comp->num_default_params = 0;
apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param);
if (comp->compile_error != MP_OBJ_NULL) {
return;
}
// in Micro Python we put the default positional parameters into a tuple using the bytecode
// the default keywords args may have already made the tuple; if not, do it now
if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
EMIT_ARG(build_tuple, comp->num_default_params);
EMIT(load_null); // sentinel indicating empty default keyword args
}
// make the function
close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);
// restore state
comp->have_star = orig_have_star;
comp->num_dict_params = orig_num_dict_params;
comp->num_default_params = orig_num_default_params;
}
// leaves function object on stack
// returns function name
STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this function
scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options);
// store the function scope so the compiling function can use it at each pass
pns->nodes[4] = (mp_parse_node_t)s;
}
// get the scope for this function
scope_t *fscope = (scope_t*)pns->nodes[4];
// compile the function definition
compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist);
// return its name (the 'f' in "def f(...):")
return fscope->simple_name;
}
// leaves class object on stack
// returns class name
STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this class
scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options);
// store the class scope so the compiling function can use it at each pass
pns->nodes[3] = (mp_parse_node_t)s;
}
EMIT(load_build_class);
// scope for this class
scope_t *cscope = (scope_t*)pns->nodes[3];
// compile the class
close_over_variables_etc(comp, cscope, 0, 0);
// get its name
EMIT_ARG(load_const_str, cscope->simple_name);
// nodes[1] has parent classes, if any
// empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
mp_parse_node_t parents = pns->nodes[1];
if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) {
parents = MP_PARSE_NODE_NULL;
}
comp->func_arg_is_super = false;
compile_trailer_paren_helper(comp, parents, false, 2);
// return its name (the 'C' in class C(...):")
return cscope->simple_name;
}
// returns true if it was a built-in decorator (even if the built-in had an error)
STATIC bool compile_built_in_decorator(compiler_t *comp, int name_len, mp_parse_node_t *name_nodes, uint *emit_options) {
if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) {
return false;
}
if (name_len != 2) {
compile_syntax_error(comp, name_nodes[0], "invalid micropython decorator");
return true;
}
qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]);
if (attr == MP_QSTR_bytecode) {
*emit_options = MP_EMIT_OPT_BYTECODE;
#if MICROPY_EMIT_NATIVE
} else if (attr == MP_QSTR_native) {
*emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
} else if (attr == MP_QSTR_viper) {
*emit_options = MP_EMIT_OPT_VIPER;
#endif
#if MICROPY_EMIT_INLINE_ASM
} else if (attr == ASM_DECORATOR_QSTR) {
*emit_options = MP_EMIT_OPT_ASM;
#endif
} else {
compile_syntax_error(comp, name_nodes[1], "invalid micropython decorator");
}
return true;
}
STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) {
// get the list of decorators
mp_parse_node_t *nodes;
int n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes);
// inherit emit options for this function/class definition
uint emit_options = comp->scope_cur->emit_options;
// compile each decorator
int num_built_in_decorators = 0;
for (int i = 0; i < n; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be
mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t*)nodes[i];
// nodes[0] contains the decorator function, which is a dotted name
mp_parse_node_t *name_nodes;
int name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes);
// check for built-in decorators
if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) {
// this was a built-in
num_built_in_decorators += 1;
} else {
// not a built-in, compile normally
// compile the decorator function
compile_node(comp, name_nodes[0]);
for (int j = 1; j < name_len; j++) {
assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be
EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]));
}
// nodes[1] contains arguments to the decorator function, if any
if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) {
// call the decorator function with the arguments in nodes[1]
comp->func_arg_is_super = false;
compile_node(comp, pns_decorator->nodes[1]);
}
}
}
// compile the body (funcdef, async funcdef or classdef) and get its name
mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t*)pns->nodes[1];
qstr body_name = 0;
if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) {
body_name = compile_funcdef_helper(comp, pns_body, emit_options);
#if MICROPY_PY_ASYNC_AWAIT
} else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) {
assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0]));
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns_body->nodes[0];
body_name = compile_funcdef_helper(comp, pns0, emit_options);
scope_t *fscope = (scope_t*)pns0->nodes[4];
fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
#endif
} else {
assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be
body_name = compile_classdef_helper(comp, pns_body, emit_options);
}
// call each decorator
for (int i = 0; i < n - num_built_in_decorators; i++) {
EMIT_ARG(call_function, 1, 0, 0);
}
// store func/class object into name
compile_store_id(comp, body_name);
}
STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options);
// store function object into function name
compile_store_id(comp, fname);
}
STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_ID(pn)) {
compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn));
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
for (int i = 0; i < n - 1; i++) {
compile_node(comp, pns1->nodes[i]);
}
assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
}
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
compile_node(comp, pns1->nodes[0]);
EMIT(delete_subscr);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
EMIT_ARG(delete_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
} else {
goto cannot_delete;
}
} else {
goto cannot_delete;
}
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) {
pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
if (MP_PARSE_NODE_IS_NULL(pn)) {
goto cannot_delete;
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
// TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) {
// sequence of one item, with trailing comma
assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0]));
c_del_stmt(comp, pns->nodes[0]);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) {
// sequence of many items
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
c_del_stmt(comp, pns->nodes[0]);
for (int i = 0; i < n; i++) {
c_del_stmt(comp, pns1->nodes[i]);
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for) {
goto cannot_delete;
} else {
// sequence with 2 items
goto sequence_with_2_items;
}
} else {
// sequence with 2 items
sequence_with_2_items:
c_del_stmt(comp, pns->nodes[0]);
c_del_stmt(comp, pns->nodes[1]);
}
}
} else {
// some arbitrary statment that we can't delete (eg del 1)
goto cannot_delete;
}
return;
cannot_delete:
compile_syntax_error(comp, (mp_parse_node_t)pn, "can't delete expression");
}
STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt);
}
STATIC void compile_break_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->break_label == 0) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "'break' outside loop");
}
assert(comp->cur_except_level >= comp->break_continue_except_level);
EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level);
}
STATIC void compile_continue_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->continue_label == 0) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "'continue' outside loop");
}
assert(comp->cur_except_level >= comp->break_continue_except_level);
EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level);
}
STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->scope_cur->kind != SCOPE_FUNCTION) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "'return' outside function");
return;
}
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// no argument to 'return', so return None
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) {
// special case when returning an if-expression; to match CPython optimisation
mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0];
mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1];
uint l_fail = comp_next_label(comp);
c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
compile_node(comp, pns_test_if_expr->nodes[0]); // success value
EMIT(return_value);
EMIT_ARG(label_assign, l_fail);
compile_node(comp, pns_test_if_else->nodes[1]); // failure value
} else {
compile_node(comp, pns->nodes[0]);
}
EMIT(return_value);
}
STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_node(comp, pns->nodes[0]);
EMIT(pop_top);
}
STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// raise
EMIT_ARG(raise_varargs, 0);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) {
// raise x from y
pns = (mp_parse_node_struct_t*)pns->nodes[0];
compile_node(comp, pns->nodes[0]);
compile_node(comp, pns->nodes[1]);
EMIT_ARG(raise_varargs, 2);
} else {
// raise x
compile_node(comp, pns->nodes[0]);
EMIT_ARG(raise_varargs, 1);
}
}
// q_base holds the base of the name
// eg a -> q_base=a
// a.b.c -> q_base=a
STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) {
bool is_as = false;
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
// a name of the form x as y; unwrap it
*q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
pn = pns->nodes[0];
is_as = true;
}
if (MP_PARSE_NODE_IS_NULL(pn)) {
// empty name (eg, from . import x)
*q_base = MP_QSTR_;
EMIT_ARG(import_name, MP_QSTR_); // import the empty string
} else if (MP_PARSE_NODE_IS_ID(pn)) {
// just a simple name
qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn);
if (!is_as) {
*q_base = q_full;
}
EMIT_ARG(import_name, q_full);
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
{
// a name of the form a.b.c
if (!is_as) {
*q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
}
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
int len = n - 1;
for (int i = 0; i < n; i++) {
len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
}
byte *q_ptr;
byte *str_dest = qstr_build_start(len, &q_ptr);
for (int i = 0; i < n; i++) {
if (i > 0) {
*str_dest++ = '.';
}
size_t str_src_len;
const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len);
memcpy(str_dest, str_src, str_src_len);
str_dest += str_src_len;
}
qstr q_full = qstr_build_end(q_ptr);
EMIT_ARG(import_name, q_full);
if (is_as) {
for (int i = 1; i < n; i++) {
EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
}
}
}
}
}
STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) {
EMIT_ARG(load_const_small_int, 0); // level 0 import
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
qstr q_base;
do_import_name(comp, pn, &q_base);
compile_store_id(comp, q_base);
}
STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) {
apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name);
}
STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) {
mp_parse_node_t pn_import_source = pns->nodes[0];
// extract the preceeding .'s (if any) for a relative import, to compute the import level
uint import_level = 0;
do {
mp_parse_node_t pn_rel;
if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) {
// This covers relative imports with dots only like "from .. import"
pn_rel = pn_import_source;
pn_import_source = MP_PARSE_NODE_NULL;
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) {
// This covers relative imports starting with dot(s) like "from .foo import"
mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t*)pn_import_source;
pn_rel = pns_2b->nodes[0];
pn_import_source = pns_2b->nodes[1];
assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be
} else {
// Not a relative import
break;
}
// get the list of . and/or ...'s
mp_parse_node_t *nodes;
int n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes);
// count the total number of .'s
for (int i = 0; i < n; i++) {
if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) {
import_level++;
} else {
// should be an MP_TOKEN_ELLIPSIS
import_level += 3;
}
}
} while (0);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) {
EMIT_ARG(load_const_small_int, import_level);
// build the "fromlist" tuple
EMIT_ARG(load_const_str, MP_QSTR__star_);
EMIT_ARG(build_tuple, 1);
// do the import
qstr dummy_q;
do_import_name(comp, pn_import_source, &dummy_q);
EMIT(import_star);
} else {
EMIT_ARG(load_const_small_int, import_level);
// build the "fromlist" tuple
mp_parse_node_t *pn_nodes;
int n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes);
for (int i = 0; i < n; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
EMIT_ARG(load_const_str, id2);
}
EMIT_ARG(build_tuple, n);
// do the import
qstr dummy_q;
do_import_name(comp, pn_import_source, &dummy_q);
for (int i = 0; i < n; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
EMIT_ARG(import_from, id2);
if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) {
compile_store_id(comp, id2);
} else {
compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]));
}
}
EMIT(pop_top);
}
}
STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, qstr qst) {
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
compile_syntax_error(comp, pn, "identifier redefined as global");
return;
}
id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
// if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
id_info = scope_find_global(comp->scope_cur, qst);
if (id_info != NULL) {
id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
}
}
STATIC void compile_global_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->pass == MP_PASS_SCOPE) {
mp_parse_node_t *nodes;
int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
for (int i = 0; i < n; i++) {
compile_declare_global(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i]));
}
}
}
STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, qstr qst) {
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
if (added) {
scope_find_local_and_close_over(comp->scope_cur, id_info, qst);
if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
compile_syntax_error(comp, pn, "no binding for nonlocal found");
}
} else if (id_info->kind != ID_INFO_KIND_FREE) {
compile_syntax_error(comp, pn, "identifier redefined as nonlocal");
}
}
STATIC void compile_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->pass == MP_PASS_SCOPE) {
if (comp->scope_cur->kind == SCOPE_MODULE) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "can't declare nonlocal in outer code");
return;
}
mp_parse_node_t *nodes;
int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
for (int i = 0; i < n; i++) {
compile_declare_nonlocal(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i]));
}
}
}
STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
// with optimisations enabled we don't compile assertions
if (MP_STATE_VM(mp_optimise_value) != 0) {
return;
}
uint l_end = comp_next_label(comp);
c_if_cond(comp, pns->nodes[0], true, l_end);
EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
// assertion message
compile_node(comp, pns->nodes[1]);
EMIT_ARG(call_function, 1, 0, 0);
}
EMIT_ARG(raise_varargs, 1);
EMIT_ARG(label_assign, l_end);
}
STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
uint l_end = comp_next_label(comp);
// optimisation: don't emit anything when "if False"
if (!mp_parse_node_is_const_false(pns->nodes[0])) {
uint l_fail = comp_next_label(comp);
c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition
compile_node(comp, pns->nodes[1]); // if block
// optimisation: skip everything else when "if True"
if (mp_parse_node_is_const_true(pns->nodes[0])) {
goto done;
}
if (
// optimisation: don't jump over non-existent elif/else blocks
!(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))
// optimisation: don't jump if last instruction was return
&& !EMIT(last_emit_was_return_value)
) {
// jump over elif/else blocks
EMIT_ARG(jump, l_end);
}
EMIT_ARG(label_assign, l_fail);
}
// compile elif blocks (if any)
mp_parse_node_t *pn_elif;
int n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif);
for (int i = 0; i < n_elif; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be
mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t*)pn_elif[i];
// optimisation: don't emit anything when "if False"
if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) {
uint l_fail = comp_next_label(comp);
c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition
compile_node(comp, pns_elif->nodes[1]); // elif block
// optimisation: skip everything else when "elif True"
if (mp_parse_node_is_const_true(pns_elif->nodes[0])) {
goto done;
}
// optimisation: don't jump if last instruction was return
if (!EMIT(last_emit_was_return_value)) {
EMIT_ARG(jump, l_end);
}
EMIT_ARG(label_assign, l_fail);
}
}
// compile else block
compile_node(comp, pns->nodes[3]); // can be null
done:
EMIT_ARG(label_assign, l_end);
}
#define START_BREAK_CONTINUE_BLOCK \
uint16_t old_break_label = comp->break_label; \
uint16_t old_continue_label = comp->continue_label; \
uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
uint break_label = comp_next_label(comp); \
uint continue_label = comp_next_label(comp); \
comp->break_label = break_label; \
comp->continue_label = continue_label; \
comp->break_continue_except_level = comp->cur_except_level;
#define END_BREAK_CONTINUE_BLOCK \
comp->break_label = old_break_label; \
comp->continue_label = old_continue_label; \
comp->break_continue_except_level = old_break_continue_except_level;
STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
START_BREAK_CONTINUE_BLOCK
if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False"
uint top_label = comp_next_label(comp);
if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True"
EMIT_ARG(jump, continue_label);
}
EMIT_ARG(label_assign, top_label);
compile_node(comp, pns->nodes[1]); // body
EMIT_ARG(label_assign, continue_label);
c_if_cond(comp, pns->nodes[0], true, top_label); // condition
}
// break/continue apply to outer loop (if any) in the else block
END_BREAK_CONTINUE_BLOCK
compile_node(comp, pns->nodes[2]); // else
EMIT_ARG(label_assign, break_label);
}
// This function compiles an optimised for-loop of the form:
// for <var> in range(<start>, <end>, <step>):
// <body>
// else:
// <else>
// <var> must be an identifier and <step> must be a small-int.
//
// Semantics of for-loop require:
// - final failing value should not be stored in the loop variable
// - if the loop never runs, the loop variable should never be assigned
// - assignments to <var>, <end> or <step> in the body do not alter the loop
// (<step> is a constant for us, so no need to worry about it changing)
//
// If <end> is a small-int, then the stack during the for-loop contains just
// the current value of <var>. Otherwise, the stack contains <end> then the
// current value of <var>.
STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) {
START_BREAK_CONTINUE_BLOCK
uint top_label = comp_next_label(comp);
uint entry_label = comp_next_label(comp);
// put the end value on the stack if it's not a small-int constant
bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end);
if (end_on_stack) {
compile_node(comp, pn_end);
}
// compile: start
compile_node(comp, pn_start);
EMIT_ARG(jump, entry_label);
EMIT_ARG(label_assign, top_label);
// duplicate next value and store it to var
EMIT(dup_top);
c_assign(comp, pn_var, ASSIGN_STORE);
// compile body
compile_node(comp, pn_body);
EMIT_ARG(label_assign, continue_label);
// compile: var + step
compile_node(comp, pn_step);
EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);
EMIT_ARG(label_assign, entry_label);
// compile: if var <cond> end: goto top
if (end_on_stack) {
EMIT(dup_top_two);
EMIT(rot_two);
} else {
EMIT(dup_top);
compile_node(comp, pn_end);
}
assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step));
if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) {
EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
} else {
EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
}
EMIT_ARG(pop_jump_if, true, top_label);
// break/continue apply to outer loop (if any) in the else block
END_BREAK_CONTINUE_BLOCK
compile_node(comp, pn_else);
EMIT_ARG(label_assign, break_label);
// discard final value of var that failed the loop condition
EMIT(pop_top);
// discard <end> value if it's on the stack
if (end_on_stack) {
EMIT(pop_top);
}
}
STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
// this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
// this is actually slower, but uses no heap memory
// for viper it will be much, much faster
if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) {
mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0])
&& MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns_it->nodes[1], PN_trailer_paren)) {
mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t*)pns_it->nodes[1])->nodes[0];
mp_parse_node_t *args;
int n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args);
mp_parse_node_t pn_range_start;
mp_parse_node_t pn_range_end;
mp_parse_node_t pn_range_step;
bool optimize = false;
if (1 <= n_args && n_args <= 3) {
optimize = true;
if (n_args == 1) {
pn_range_start = mp_parse_node_new_small_int(0);
pn_range_end = args[0];
pn_range_step = mp_parse_node_new_small_int(1);
} else if (n_args == 2) {
pn_range_start = args[0];
pn_range_end = args[1];
pn_range_step = mp_parse_node_new_small_int(1);
} else {
pn_range_start = args[0];
pn_range_end = args[1];
pn_range_step = args[2];
// We need to know sign of step. This is possible only if it's constant
if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)) {
optimize = false;
}
}
// arguments must be able to be compiled as standard expressions
if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) {
int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_start);
if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
optimize = false;
}
}
if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) {
int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_end);
if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
optimize = false;
}
}
}
if (optimize) {
compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]);
return;
}
}
}
START_BREAK_CONTINUE_BLOCK
comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
uint pop_label = comp_next_label(comp);
compile_node(comp, pns->nodes[1]); // iterator
EMIT(get_iter);
EMIT_ARG(label_assign, continue_label);
EMIT_ARG(for_iter, pop_label);
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
compile_node(comp, pns->nodes[2]); // body
if (!EMIT(last_emit_was_return_value)) {
EMIT_ARG(jump, continue_label);
}
EMIT_ARG(label_assign, pop_label);
EMIT(for_iter_end);
// break/continue apply to outer loop (if any) in the else block
END_BREAK_CONTINUE_BLOCK
compile_node(comp, pns->nodes[3]); // else (not tested)
EMIT_ARG(label_assign, break_label);
}
STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) {
// setup code
uint l1 = comp_next_label(comp);
uint success_label = comp_next_label(comp);
EMIT_ARG(setup_except, l1);
compile_increase_except_level(comp);
compile_node(comp, pn_body); // body
EMIT(pop_block);
EMIT_ARG(jump, success_label); // jump over exception handler
EMIT_ARG(label_assign, l1); // start of exception handler
EMIT(start_except_handler);
// at this point the top of the stack contains the exception instance that was raised
uint l2 = comp_next_label(comp);
for (int i = 0; i < n_except; i++) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be
mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t*)pn_excepts[i];
qstr qstr_exception_local = 0;
uint end_finally_label = comp_next_label(comp);
if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) {
// this is a catch all exception handler
if (i + 1 != n_except) {
compile_syntax_error(comp, pn_excepts[i], "default 'except:' must be last");
compile_decrease_except_level(comp);
return;
}
} else {
// this exception handler requires a match to a certain type of exception
mp_parse_node_t pns_exception_expr = pns_except->nodes[0];
if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) {
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns_exception_expr;
if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) {
// handler binds the exception to a local
pns_exception_expr = pns3->nodes[0];
qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]);
}
}
EMIT(dup_top);
compile_node(comp, pns_exception_expr);
EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
EMIT_ARG(pop_jump_if, false, end_finally_label);
}
// either discard or store the exception instance
if (qstr_exception_local == 0) {
EMIT(pop_top);
} else {
compile_store_id(comp, qstr_exception_local);
}
uint l3 = 0;
if (qstr_exception_local != 0) {
l3 = comp_next_label(comp);
EMIT_ARG(setup_finally, l3);
compile_increase_except_level(comp);
}
compile_node(comp, pns_except->nodes[1]);
if (qstr_exception_local != 0) {
EMIT(pop_block);
}
EMIT(pop_except);
if (qstr_exception_local != 0) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT_ARG(label_assign, l3);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
compile_store_id(comp, qstr_exception_local);
compile_delete_id(comp, qstr_exception_local);
compile_decrease_except_level(comp);
EMIT(end_finally);
}
EMIT_ARG(jump, l2);
EMIT_ARG(label_assign, end_finally_label);
EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance
}
compile_decrease_except_level(comp);
EMIT(end_finally);
EMIT(end_except_handler);
EMIT_ARG(label_assign, success_label);
compile_node(comp, pn_else); // else block, can be null
EMIT_ARG(label_assign, l2);
}
STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) {
uint l_finally_block = comp_next_label(comp);
EMIT_ARG(setup_finally, l_finally_block);
compile_increase_except_level(comp);
if (n_except == 0) {
assert(MP_PARSE_NODE_IS_NULL(pn_else));
EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
compile_node(comp, pn_body);
EMIT_ARG(adjust_stack_size, -3);
} else {
compile_try_except(comp, pn_body, n_except, pn_except, pn_else);
}
EMIT(pop_block);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT_ARG(label_assign, l_finally_block);
compile_node(comp, pn_finally);
compile_decrease_except_level(comp);
EMIT(end_finally);
}
STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be
{
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) {
// just try-finally
compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) {
// try-except and possibly else and/or finally
mp_parse_node_t *pn_excepts;
int n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts);
if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) {
// no finally
compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]);
} else {
// have finally
compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t*)pns2->nodes[2])->nodes[0]);
}
} else {
// just try-except
mp_parse_node_t *pn_excepts;
int n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts);
compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL);
}
}
}
STATIC void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) {
if (n == 0) {
// no more pre-bits, compile the body of the with
compile_node(comp, body);
} else {
uint l_end = comp_next_label(comp);
if (MICROPY_EMIT_NATIVE && comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
// we need to allocate an extra label for the native emitter
// it will use l_end+1 as an auxiliary label
comp_next_label(comp);
}
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
// this pre-bit is of the form "a as b"
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0];
compile_node(comp, pns->nodes[0]);
EMIT_ARG(setup_with, l_end);
c_assign(comp, pns->nodes[1], ASSIGN_STORE);
} else {
// this pre-bit is just an expression
compile_node(comp, nodes[0]);
EMIT_ARG(setup_with, l_end);
EMIT(pop_top);
}
compile_increase_except_level(comp);
// compile additional pre-bits and the body
compile_with_stmt_helper(comp, n - 1, nodes + 1, body);
// finish this with block
EMIT_ARG(with_cleanup, l_end);
compile_decrease_except_level(comp);
EMIT(end_finally);
}
}
STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
// get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
mp_parse_node_t *nodes;
int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
assert(n > 0);
// compile in a nested fashion
compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
}
STATIC void compile_yield_from(compiler_t *comp) {
EMIT(get_iter);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(yield_from);
}
#if MICROPY_PY_ASYNC_AWAIT
STATIC void compile_await_object_method(compiler_t *comp, qstr method) {
EMIT_ARG(load_method, method);
EMIT_ARG(call_method, 0, 0, 0);
compile_yield_from(comp);
}
STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
// comp->break_label |= MP_EMIT_BREAK_FROM_FOR;
qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
uint while_else_label = comp_next_label(comp);
uint try_exception_label = comp_next_label(comp);
uint try_else_label = comp_next_label(comp);
uint try_finally_label = comp_next_label(comp);
compile_node(comp, pns->nodes[1]); // iterator
compile_await_object_method(comp, MP_QSTR___aiter__);
compile_store_id(comp, context);
START_BREAK_CONTINUE_BLOCK
EMIT_ARG(label_assign, continue_label);
EMIT_ARG(setup_except, try_exception_label);
compile_increase_except_level(comp);
compile_load_id(comp, context);
compile_await_object_method(comp, MP_QSTR___anext__);
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
EMIT(pop_block);
EMIT_ARG(jump, try_else_label);
EMIT_ARG(label_assign, try_exception_label);
EMIT(start_except_handler);
EMIT(dup_top);
EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration);
EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
EMIT_ARG(pop_jump_if, false, try_finally_label);
EMIT(pop_top); // pop exception instance
EMIT(pop_except);
EMIT_ARG(jump, while_else_label);
EMIT_ARG(label_assign, try_finally_label);
EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack
compile_decrease_except_level(comp);
EMIT(end_finally);
EMIT(end_except_handler);
EMIT_ARG(label_assign, try_else_label);
compile_node(comp, pns->nodes[2]); // body
EMIT_ARG(jump, continue_label);
// break/continue apply to outer loop (if any) in the else block
END_BREAK_CONTINUE_BLOCK
EMIT_ARG(label_assign, while_else_label);
compile_node(comp, pns->nodes[3]); // else
EMIT_ARG(label_assign, break_label);
}
STATIC void compile_async_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) {
if (n == 0) {
// no more pre-bits, compile the body of the with
compile_node(comp, body);
} else {
uint try_exception_label = comp_next_label(comp);
uint no_reraise_label = comp_next_label(comp);
uint try_else_label = comp_next_label(comp);
uint end_label = comp_next_label(comp);
qstr context;
if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
// this pre-bit is of the form "a as b"
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0];
compile_node(comp, pns->nodes[0]);
context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
compile_store_id(comp, context);
compile_load_id(comp, context);
compile_await_object_method(comp, MP_QSTR___aenter__);
c_assign(comp, pns->nodes[1], ASSIGN_STORE);
} else {
// this pre-bit is just an expression
compile_node(comp, nodes[0]);
context = MP_PARSE_NODE_LEAF_ARG(nodes[0]);
compile_store_id(comp, context);
compile_load_id(comp, context);
compile_await_object_method(comp, MP_QSTR___aenter__);
EMIT(pop_top);
}
compile_load_id(comp, context);
EMIT_ARG(load_method, MP_QSTR___aexit__);
EMIT_ARG(setup_except, try_exception_label);
compile_increase_except_level(comp);
// compile additional pre-bits and the body
compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body);
// finish this with block
EMIT(pop_block);
EMIT_ARG(jump, try_else_label); // jump over exception handler
EMIT_ARG(label_assign, try_exception_label); // start of exception handler
EMIT(start_except_handler);
// at this point the stack contains: ..., __aexit__, self, exc
EMIT(dup_top);
#if MICROPY_CPYTHON_COMPAT
EMIT_ARG(load_attr, MP_QSTR___class__); // get type(exc)
#else
compile_load_id(comp, MP_QSTR_type);
EMIT(rot_two);
EMIT_ARG(call_function, 1, 0, 0); // get type(exc)
#endif
EMIT(rot_two);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value
// at this point the stack contains: ..., __aexit__, self, type(exc), exc, None
EMIT_ARG(call_method, 3, 0, 0);
compile_yield_from(comp);
EMIT_ARG(pop_jump_if, true, no_reraise_label);
EMIT_ARG(raise_varargs, 0);
EMIT_ARG(label_assign, no_reraise_label);
EMIT(pop_except);
EMIT_ARG(jump, end_label);
EMIT_ARG(adjust_stack_size, 3); // adjust for __aexit__, self, exc
compile_decrease_except_level(comp);
EMIT(end_finally);
EMIT(end_except_handler);
EMIT_ARG(label_assign, try_else_label); // start of try-else handler
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(dup_top);
EMIT(dup_top);
EMIT_ARG(call_method, 3, 0, 0);
compile_yield_from(comp);
EMIT(pop_top);
EMIT_ARG(label_assign, end_label);
}
}
STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
// get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
mp_parse_node_t *nodes;
int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
assert(n > 0);
// compile in a nested fashion
compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
}
STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0]));
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) {
// async def
compile_funcdef(comp, pns0);
scope_t *fscope = (scope_t*)pns0->nodes[4];
fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) {
// async for
compile_async_for_stmt(comp, pns0);
} else {
// async with
assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt);
compile_async_with_stmt(comp, pns0);
}
}
#endif
STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
// for REPL, evaluate then print the expression
compile_load_id(comp, MP_QSTR___repl_print__);
compile_node(comp, pns->nodes[0]);
EMIT_ARG(call_function, 1, 0, 0);
EMIT(pop_top);
} else {
// for non-REPL, evaluate then discard the expression
if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_bytes)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
// do nothing with a lonely constant
} else {
compile_node(comp, pns->nodes[0]); // just an expression
EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
}
}
} else if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
int kind = MP_PARSE_NODE_STRUCT_KIND(pns1);
if (kind == PN_expr_stmt_augassign) {
c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign
compile_node(comp, pns1->nodes[1]); // rhs
assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0]));
mp_binary_op_t op;
switch (MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])) {
case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break;
case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break;
case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break;
case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break;
case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break;
case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break;
case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break;
case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break;
case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break;
case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break;
case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break;
case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break;
}
EMIT_ARG(binary_op, op);
c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign
} else if (kind == PN_expr_stmt_assign_list) {
int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1;
compile_node(comp, pns1->nodes[rhs]); // rhs
// following CPython, we store left-most first
if (rhs > 0) {
EMIT(dup_top);
}
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
for (int i = 0; i < rhs; i++) {
if (i + 1 < rhs) {
EMIT(dup_top);
}
c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store
}
} else {
plain_assign:
if (MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_testlist_star_expr)
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[1]) == 2
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) {
// optimisation for a, b = c, d
mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns->nodes[1];
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)) {
// can't optimise when it's a star expression on the lhs
goto no_optimisation;
}
compile_node(comp, pns10->nodes[0]); // rhs
compile_node(comp, pns10->nodes[1]); // rhs
EMIT(rot_two);
c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
} else if (MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_testlist_star_expr)
&& MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[1]) == 3
&& MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) {
// optimisation for a, b, c = d, e, f
mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns->nodes[1];
mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) {
// can't optimise when it's a star expression on the lhs
goto no_optimisation;
}
compile_node(comp, pns10->nodes[0]); // rhs
compile_node(comp, pns10->nodes[1]); // rhs
compile_node(comp, pns10->nodes[2]); // rhs
EMIT(rot_three);
EMIT(rot_two);
c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
} else {
no_optimisation:
compile_node(comp, pns->nodes[1]); // rhs
c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
}
}
} else {
goto plain_assign;
}
}
STATIC void c_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns, mp_binary_op_t binary_op) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
for (int i = 1; i < num_nodes; i += 1) {
compile_node(comp, pns->nodes[i]);
EMIT_ARG(binary_op, binary_op);
}
}
STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else));
mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns->nodes[1];
uint l_fail = comp_next_label(comp);
uint l_end = comp_next_label(comp);
c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
compile_node(comp, pns->nodes[0]); // success value
EMIT_ARG(jump, l_end);
EMIT_ARG(label_assign, l_fail);
EMIT_ARG(adjust_stack_size, -1); // adjust stack size
compile_node(comp, pns_test_if_else->nodes[1]); // failure value
EMIT_ARG(label_assign, l_end);
}
STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this lambda
scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
// store the lambda scope so the compiling function (this one) can use it at each pass
pns->nodes[2] = (mp_parse_node_t)s;
}
// get the scope for this lambda
scope_t *this_scope = (scope_t*)pns->nodes[2];
// compile the lambda definition
compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist);
}
STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns, bool cond) {
uint l_end = comp_next_label(comp);
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < n; i += 1) {
compile_node(comp, pns->nodes[i]);
if (i + 1 < n) {
EMIT_ARG(jump_if_or_pop, cond, l_end);
}
}
EMIT_ARG(label_assign, l_end);
}
STATIC void compile_or_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_or_and_test(comp, pns, true);
}
STATIC void compile_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_or_and_test(comp, pns, false);
}
STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_node(comp, pns->nodes[0]);
EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
}
STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
bool multi = (num_nodes > 3);
uint l_fail = 0;
if (multi) {
l_fail = comp_next_label(comp);
}
for (int i = 1; i + 1 < num_nodes; i += 2) {
compile_node(comp, pns->nodes[i + 1]);
if (i + 2 < num_nodes) {
EMIT(dup_top);
EMIT(rot_three);
}
if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) {
mp_binary_op_t op;
switch (MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])) {
case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break;
case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break;
case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break;
case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break;
case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break;
case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break;
case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break;
}
EMIT_ARG(binary_op, op);
} else {
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[i];
int kind = MP_PARSE_NODE_STRUCT_KIND(pns2);
if (kind == PN_comp_op_not_in) {
EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN);
} else {
assert(kind == PN_comp_op_is); // should be
if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) {
EMIT_ARG(binary_op, MP_BINARY_OP_IS);
} else {
EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT);
}
}
}
if (i + 2 < num_nodes) {
EMIT_ARG(jump_if_or_pop, false, l_fail);
}
}
if (multi) {
uint l_end = comp_next_label(comp);
EMIT_ARG(jump, l_end);
EMIT_ARG(label_assign, l_fail);
EMIT_ARG(adjust_stack_size, 1);
EMIT(rot_two);
EMIT(pop_top);
EMIT_ARG(label_assign, l_end);
}
}
STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "*x must be assignment target");
}
STATIC void compile_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
c_binary_op(comp, pns, MP_BINARY_OP_OR);
}
STATIC void compile_xor_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
c_binary_op(comp, pns, MP_BINARY_OP_XOR);
}
STATIC void compile_and_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
c_binary_op(comp, pns, MP_BINARY_OP_AND);
}
STATIC void compile_shift_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
for (int i = 1; i + 1 < num_nodes; i += 2) {
compile_node(comp, pns->nodes[i + 1]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_LESS)) {
EMIT_ARG(binary_op, MP_BINARY_OP_LSHIFT);
} else {
assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_MORE)); // should be
EMIT_ARG(binary_op, MP_BINARY_OP_RSHIFT);
}
}
}
STATIC void compile_arith_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
for (int i = 1; i + 1 < num_nodes; i += 2) {
compile_node(comp, pns->nodes[i + 1]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_PLUS)) {
EMIT_ARG(binary_op, MP_BINARY_OP_ADD);
} else {
assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_MINUS)); // should be
EMIT_ARG(binary_op, MP_BINARY_OP_SUBTRACT);
}
}
}
STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
compile_node(comp, pns->nodes[0]);
for (int i = 1; i + 1 < num_nodes; i += 2) {
compile_node(comp, pns->nodes[i + 1]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_STAR)) {
EMIT_ARG(binary_op, MP_BINARY_OP_MULTIPLY);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_DBL_SLASH)) {
EMIT_ARG(binary_op, MP_BINARY_OP_FLOOR_DIVIDE);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_SLASH)) {
EMIT_ARG(binary_op, MP_BINARY_OP_TRUE_DIVIDE);
} else {
assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[i], MP_TOKEN_OP_PERCENT)); // should be
EMIT_ARG(binary_op, MP_BINARY_OP_MODULO);
}
}
}
STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_node(comp, pns->nodes[1]);
if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_PLUS)) {
EMIT_ARG(unary_op, MP_UNARY_OP_POSITIVE);
} else if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_MINUS)) {
EMIT_ARG(unary_op, MP_UNARY_OP_NEGATIVE);
} else {
assert(MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[0], MP_TOKEN_OP_TILDE)); // should be
EMIT_ARG(unary_op, MP_UNARY_OP_INVERT);
}
}
STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) {
// this is to handle special super() call
comp->func_arg_is_super = MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super;
compile_generic_all_nodes(comp, pns);
}
STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power
EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
}
STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) {
// function to call is on top of stack
// this is to handle special super() call
if (MP_PARSE_NODE_IS_NULL(pn_arglist) && comp->func_arg_is_super && comp->scope_cur->kind == SCOPE_FUNCTION) {
compile_load_id(comp, MP_QSTR___class__);
// look for first argument to function (assumes it's "self")
for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
if (comp->scope_cur->id_info[i].flags & ID_FLAG_IS_PARAM) {
// first argument found; load it and call super
EMIT_LOAD_FAST(MP_QSTR_, comp->scope_cur->id_info[i].local_num);
EMIT_ARG(call_function, 2, 0, 0);
return;
}
}
compile_syntax_error(comp, MP_PARSE_NODE_NULL, "super() call cannot find self"); // really a TypeError
return;
}
// get the list of arguments
mp_parse_node_t *args;
int n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args);
// compile the arguments
// Rather than calling compile_node on the list, we go through the list of args
// explicitly here so that we can count the number of arguments and give sensible
// error messages.
int n_positional = n_positional_extra;
uint n_keyword = 0;
uint star_flags = 0;
mp_parse_node_struct_t *star_args_node = NULL, *dblstar_args_node = NULL;
for (int i = 0; i < n_args; i++) {
if (MP_PARSE_NODE_IS_STRUCT(args[i])) {
mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t*)args[i];
if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) {
if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) {
compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple *x");
return;
}
star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
star_args_node = pns_arg;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) {
if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple **x");
return;
}
star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
dblstar_args_node = pns_arg;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) {
if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) {
if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) {
compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "LHS of keyword arg must be an id");
return;
}
EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0]));
compile_node(comp, pns_arg->nodes[1]);
n_keyword += 1;
} else {
compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR);
n_positional++;
}
} else {
goto normal_argument;
}
} else {
normal_argument:
if (n_keyword > 0) {
compile_syntax_error(comp, args[i], "non-keyword arg after keyword arg");
return;
}
compile_node(comp, args[i]);
n_positional++;
}
}
// compile the star/double-star arguments if we had them
// if we had one but not the other then we load "null" as a place holder
if (star_flags != 0) {
if (star_args_node == NULL) {
EMIT(load_null);
} else {
compile_node(comp, star_args_node->nodes[0]);
}
if (dblstar_args_node == NULL) {
EMIT(load_null);
} else {
compile_node(comp, dblstar_args_node->nodes[0]);
}
}
// emit the function/method call
if (is_method_call) {
EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
} else {
EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
}
}
STATIC void compile_atom_expr_trailers(compiler_t *comp, mp_parse_node_struct_t *pns) {
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
if (i + 1 < num_nodes && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[i], PN_trailer_period) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[i + 1], PN_trailer_paren)) {
// optimisation for method calls a.f(...), following PyPy
mp_parse_node_struct_t *pns_period = (mp_parse_node_struct_t*)pns->nodes[i];
mp_parse_node_struct_t *pns_paren = (mp_parse_node_struct_t*)pns->nodes[i + 1];
EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0])); // get the method
compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
i += 1;
} else {
compile_node(comp, pns->nodes[i]);
}
comp->func_arg_is_super = false;
}
}
STATIC void compile_atom_string(compiler_t *comp, mp_parse_node_struct_t *pns) {
// a list of strings
// check type of list (string or bytes) and count total number of bytes
int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
size_t n_bytes = 0;
int string_kind = MP_PARSE_NODE_NULL;
for (int i = 0; i < n; i++) {
int pn_kind;
if (MP_PARSE_NODE_IS_LEAF(pns->nodes[i])) {
pn_kind = MP_PARSE_NODE_LEAF_KIND(pns->nodes[i]);
assert(pn_kind == MP_PARSE_NODE_STRING || pn_kind == MP_PARSE_NODE_BYTES);
n_bytes += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
} else {
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i]));
mp_parse_node_struct_t *pns_string = (mp_parse_node_struct_t*)pns->nodes[i];
if (MP_PARSE_NODE_STRUCT_KIND(pns_string) == PN_string) {
pn_kind = MP_PARSE_NODE_STRING;
} else {
assert(MP_PARSE_NODE_STRUCT_KIND(pns_string) == PN_bytes);
pn_kind = MP_PARSE_NODE_BYTES;
}
n_bytes += pns_string->nodes[1];
}
if (i == 0) {
string_kind = pn_kind;
} else if (pn_kind != string_kind) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "cannot mix bytes and nonbytes literals");
return;
}
}
// if we are not in the last pass, just load a dummy object
if (comp->pass != MP_PASS_EMIT) {
EMIT_ARG(load_const_obj, mp_const_none);
return;
}
// concatenate string/bytes
vstr_t vstr;
vstr_init_len(&vstr, n_bytes);
byte *s_dest = (byte*)vstr.buf;
for (int i = 0; i < n; i++) {
if (MP_PARSE_NODE_IS_LEAF(pns->nodes[i])) {
size_t s_len;
const byte *s = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &s_len);
memcpy(s_dest, s, s_len);
s_dest += s_len;
} else {
mp_parse_node_struct_t *pns_string = (mp_parse_node_struct_t*)pns->nodes[i];
memcpy(s_dest, (const char*)pns_string->nodes[0], pns_string->nodes[1]);
s_dest += pns_string->nodes[1];
}
}
// load the object
EMIT_ARG(load_const_obj, mp_obj_new_str_from_vstr(string_kind == MP_PARSE_NODE_STRING ? &mp_type_str : &mp_type_bytes, &vstr));
}
// pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node
STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) {
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];
if (comp->pass == MP_PASS_SCOPE) {
// create a new scope for this comprehension
scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
// store the comprehension scope so the compiling function (this one) can use it at each pass
pns_comp_for->nodes[3] = (mp_parse_node_t)s;
}
// get the scope for this comprehension
scope_t *this_scope = (scope_t*)pns_comp_for->nodes[3];
// compile the comprehension
close_over_variables_etc(comp, this_scope, 0, 0);
compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator
EMIT(get_iter);
EMIT_ARG(call_function, 1, 0, 0);
}
STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// an empty tuple
c_tuple(comp, MP_PARSE_NODE_NULL, NULL);
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
pns = (mp_parse_node_struct_t*)pns->nodes[0];
assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1]));
if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
// tuple of one item, with trailing comma
assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
c_tuple(comp, pns->nodes[0], NULL);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
// tuple of many items
c_tuple(comp, pns->nodes[0], pns2);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
// generator expression
compile_comprehension(comp, pns, SCOPE_GEN_EXPR);
} else {
// tuple with 2 items
goto tuple_with_2_items;
}
} else {
// tuple with 2 items
tuple_with_2_items:
c_tuple(comp, MP_PARSE_NODE_NULL, pns);
}
}
}
STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// empty list
EMIT_ARG(build_list, 0);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[0];
if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) {
mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns2->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) {
// list of one item, with trailing comma
assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0]));
compile_node(comp, pns2->nodes[0]);
EMIT_ARG(build_list, 1);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) {
// list of many items
compile_node(comp, pns2->nodes[0]);
compile_generic_all_nodes(comp, pns3);
EMIT_ARG(build_list, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3));
} else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) {
// list comprehension
compile_comprehension(comp, pns2, SCOPE_LIST_COMP);
} else {
// list with 2 items
goto list_with_2_items;
}
} else {
// list with 2 items
list_with_2_items:
compile_node(comp, pns2->nodes[0]);
compile_node(comp, pns2->nodes[1]);
EMIT_ARG(build_list, 2);
}
} else {
// list with 1 item
compile_node(comp, pns->nodes[0]);
EMIT_ARG(build_list, 1);
}
}
STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) {
mp_parse_node_t pn = pns->nodes[0];
if (MP_PARSE_NODE_IS_NULL(pn)) {
// empty dict
EMIT_ARG(build_map, 0);
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) {
// dict with one element
EMIT_ARG(build_map, 1);
compile_node(comp, pn);
EMIT(store_map);
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
// dict/set with multiple elements
// get tail elements (2nd, 3rd, ...)
mp_parse_node_t *nodes;
int n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);
// first element sets whether it's a dict or set
bool is_dict;
if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
// a dictionary
EMIT_ARG(build_map, 1 + n);
compile_node(comp, pns->nodes[0]);
EMIT(store_map);
is_dict = true;
} else {
// a set
compile_node(comp, pns->nodes[0]); // 1st value of set
is_dict = false;
}
// process rest of elements
for (int i = 0; i < n; i++) {
mp_parse_node_t pn_i = nodes[i];
bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item);
compile_node(comp, pn_i);
if (is_dict) {
if (!is_key_value) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting key:value for dictionary");
return;
}
EMIT(store_map);
} else {
if (is_key_value) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting just a value for set");
return;
}
}
}
#if MICROPY_PY_BUILTINS_SET
// if it's a set, build it
if (!is_dict) {
EMIT_ARG(build_set, 1 + n);
}
#endif
} else {
assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be
// dict/set comprehension
if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
// a dictionary comprehension
compile_comprehension(comp, pns, SCOPE_DICT_COMP);
} else {
// a set comprehension
compile_comprehension(comp, pns, SCOPE_SET_COMP);
}
}
} else {
// set with one element
goto set_with_one_element;
}
} else {
// set with one element
set_with_one_element:
#if MICROPY_PY_BUILTINS_SET
compile_node(comp, pn);
EMIT_ARG(build_set, 1);
#else
assert(0);
#endif
}
}
STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_trailer_paren_helper(comp, pns->nodes[0], false, 0);
}
STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
// object who's index we want is on top of stack
compile_node(comp, pns->nodes[0]); // the index
EMIT(load_subscr);
}
STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) {
// object who's attribute we want is on top of stack
EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // attribute to get
}
#if MICROPY_PY_BUILTINS_SLICE
STATIC void compile_subscript_3_helper(compiler_t *comp, mp_parse_node_struct_t *pns) {
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be
mp_parse_node_t pn = pns->nodes[0];
if (MP_PARSE_NODE_IS_NULL(pn)) {
// [?:]
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT_ARG(build_slice, 2);
} else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
pn = pns->nodes[0];
if (MP_PARSE_NODE_IS_NULL(pn)) {
// [?::]
EMIT_ARG(build_slice, 2);
} else {
// [?::x]
compile_node(comp, pn);
EMIT_ARG(build_slice, 3);
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) {
compile_node(comp, pns->nodes[0]);
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
pns = (mp_parse_node_struct_t*)pns->nodes[1];
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// [?:x:]
EMIT_ARG(build_slice, 2);
} else {
// [?:x:x]
compile_node(comp, pns->nodes[0]);
EMIT_ARG(build_slice, 3);
}
} else {
// [?:x]
compile_node(comp, pn);
EMIT_ARG(build_slice, 2);
}
} else {
// [?:x]
compile_node(comp, pn);
EMIT_ARG(build_slice, 2);
}
}
STATIC void compile_subscript_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
compile_node(comp, pns->nodes[0]); // start of slice
assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
compile_subscript_3_helper(comp, (mp_parse_node_struct_t*)pns->nodes[1]);
}
STATIC void compile_subscript_3(compiler_t *comp, mp_parse_node_struct_t *pns) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
compile_subscript_3_helper(comp, pns);
}
#endif // MICROPY_PY_BUILTINS_SLICE
STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) {
// if this is called then we are compiling a dict key:value pair
compile_node(comp, pns->nodes[1]); // value
compile_node(comp, pns->nodes[0]); // key
}
STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options);
// store class object into class name
compile_store_id(comp, cname);
}
STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "'yield' outside function");
return;
}
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(yield_value);
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) {
pns = (mp_parse_node_struct_t*)pns->nodes[0];
compile_node(comp, pns->nodes[0]);
compile_yield_from(comp);
} else {
compile_node(comp, pns->nodes[0]);
EMIT(yield_value);
}
}
#if MICROPY_PY_ASYNC_AWAIT
STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) {
if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
compile_syntax_error(comp, (mp_parse_node_t)pns, "'await' outside function");
return;
}
compile_atom_expr_normal(comp, pns);
compile_yield_from(comp);
}
#endif
STATIC void compile_string(compiler_t *comp, mp_parse_node_struct_t *pns) {
// only create and load the actual str object on the last pass
if (comp->pass != MP_PASS_EMIT) {
EMIT_ARG(load_const_obj, mp_const_none);
} else {
EMIT_ARG(load_const_obj, mp_obj_new_str((const char*)pns->nodes[0], pns->nodes[1], false));
}
}
STATIC void compile_bytes(compiler_t *comp, mp_parse_node_struct_t *pns) {
// only create and load the actual bytes object on the last pass
if (comp->pass != MP_PASS_EMIT) {
EMIT_ARG(load_const_obj, mp_const_none);
} else {
EMIT_ARG(load_const_obj, mp_obj_new_bytes((const byte*)pns->nodes[0], pns->nodes[1]));
}
}
STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) {
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
// nodes are 32-bit pointers, but need to extract 64-bit object
EMIT_ARG(load_const_obj, (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32));
#else
EMIT_ARG(load_const_obj, (mp_obj_t)pns->nodes[0]);
#endif
}
typedef void (*compile_function_t)(compiler_t*, mp_parse_node_struct_t*);
STATIC const compile_function_t compile_function[] = {
#define nc NULL
#define c(f) compile_##f
#define DEF_RULE(rule, comp, kind, ...) comp,
#include "py/grammar.h"
#undef nc
#undef c
#undef DEF_RULE
NULL,
compile_string,
compile_bytes,
compile_const_object,
};
STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
if (MP_PARSE_NODE_IS_NULL(pn)) {
// pass
} else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
#if MICROPY_DYNAMIC_COMPILER
mp_uint_t sign_mask = -(1 << (mp_dynamic_compiler.small_int_bits - 1));
if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) {
// integer fits in target runtime's small-int
EMIT_ARG(load_const_small_int, arg);
} else {
// integer doesn't fit, so create a multi-precision int object
// (but only create the actual object on the last pass)
if (comp->pass != MP_PASS_EMIT) {
EMIT_ARG(load_const_obj, mp_const_none);
} else {
EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg));
}
}
#else
EMIT_ARG(load_const_small_int, arg);
#endif
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
case MP_PARSE_NODE_ID: compile_load_id(comp, arg); break;
case MP_PARSE_NODE_STRING: EMIT_ARG(load_const_str, arg); break;
case MP_PARSE_NODE_BYTES:
// only create and load the actual bytes object on the last pass
if (comp->pass != MP_PASS_EMIT) {
EMIT_ARG(load_const_obj, mp_const_none);
} else {
size_t len;
const byte *data = qstr_data(arg, &len);
EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
}
break;
case MP_PARSE_NODE_TOKEN: default:
if (arg == MP_TOKEN_NEWLINE) {
// this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
// or when single_input lets through a NEWLINE (user enters a blank line)
// do nothing
} else {
EMIT_ARG(load_const_tok, arg);
}
break;
}
} else {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
EMIT_ARG(set_source_line, pns->source_line);
compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)];
assert(f != NULL);
f(comp, pns);
}
}
STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
// check that **kw is last
if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
compile_syntax_error(comp, pn, "invalid syntax");
return;
}
qstr param_name = MP_QSTR_NULL;
uint param_flag = ID_FLAG_IS_PARAM;
if (MP_PARSE_NODE_IS_ID(pn)) {
param_name = MP_PARSE_NODE_LEAF_ARG(pn);
if (comp->have_star) {
// comes after a star, so counts as a keyword-only parameter
comp->scope_cur->num_kwonly_args += 1;
} else {
// comes before a star, so counts as a positional parameter
comp->scope_cur->num_pos_args += 1;
}
} else {
assert(MP_PARSE_NODE_IS_STRUCT(pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) {
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
if (comp->have_star) {
// comes after a star, so counts as a keyword-only parameter
comp->scope_cur->num_kwonly_args += 1;
} else {
// comes before a star, so counts as a positional parameter
comp->scope_cur->num_pos_args += 1;
}
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) {
if (comp->have_star) {
// more than one star
compile_syntax_error(comp, pn, "invalid syntax");
return;
}
comp->have_star = true;
param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
// bare star
// TODO see http://www.python.org/dev/peps/pep-3102/
//assert(comp->scope_cur->num_dict_params == 0);
} else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
// named star
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be
// named star with possible annotation
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
pns = (mp_parse_node_struct_t*)pns->nodes[0];
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
}
} else {
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be
param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
}
}
if (param_name != MP_QSTR_NULL) {
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added);
if (!added) {
compile_syntax_error(comp, pn, "name reused for argument");
return;
}
id_info->kind = ID_INFO_KIND_LOCAL;
id_info->flags = param_flag;
}
}
STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) {
compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
}
STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) {
compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
}
#if MICROPY_EMIT_NATIVE
STATIC void compile_scope_func_annotations(compiler_t *comp, mp_parse_node_t pn) {
if (!MP_PARSE_NODE_IS_STRUCT(pn)) {
// no annotation
return;
}
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_name) {
// named parameter with possible annotation
// fallthrough
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_star) {
if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)) {
// named star with possible annotation
pns = (mp_parse_node_struct_t*)pns->nodes[0];
// fallthrough
} else {
// no annotation
return;
}
} else {
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_dbl_star);
// double star with possible annotation
// fallthrough
}
mp_parse_node_t pn_annotation = pns->nodes[1];
if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
qstr param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
id_info_t *id_info = scope_find(comp->scope_cur, param_name);
assert(id_info != NULL);
if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
qstr arg_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type);
} else {
compile_syntax_error(comp, pn_annotation, "parameter annotation must be an identifier");
}
}
}
#endif // MICROPY_EMIT_NATIVE
STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) {
uint l_top = comp_next_label(comp);
uint l_end = comp_next_label(comp);
EMIT_ARG(label_assign, l_top);
EMIT_ARG(for_iter, l_end);
c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE);
mp_parse_node_t pn_iter = pns_comp_for->nodes[2];
tail_recursion:
if (MP_PARSE_NODE_IS_NULL(pn_iter)) {
// no more nested if/for; compile inner expression
compile_node(comp, pn_inner_expr);
if (comp->scope_cur->kind == SCOPE_GEN_EXPR) {
EMIT(yield_value);
EMIT(pop_top);
} else {
EMIT_ARG(store_comp, comp->scope_cur->kind, for_depth + 2);
}
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_iter, PN_comp_if)) {
// if condition
mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t*)pn_iter;
c_if_cond(comp, pns_comp_if->nodes[0], false, l_top);
pn_iter = pns_comp_if->nodes[1];
goto tail_recursion;
} else {
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_iter, PN_comp_for)); // should be
// for loop
mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t*)pn_iter;
compile_node(comp, pns_comp_for2->nodes[1]);
EMIT(get_iter);
compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1);
}
EMIT_ARG(jump, l_top);
EMIT_ARG(label_assign, l_end);
EMIT(for_iter_end);
}
STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
#if MICROPY_ENABLE_DOC_STRING
// see http://www.python.org/dev/peps/pep-0257/
// look for the first statement
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
// a statement; fall through
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
// file input; find the first non-newline node
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
for (int i = 0; i < num_nodes; i++) {
pn = pns->nodes[i];
if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
// not a newline, so this is the first statement; finish search
break;
}
}
// if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
// a list of statements; get the first one
pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
} else {
return;
}
// check the first statement for a doc string
if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
&& MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
|| MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_string)) {
// compile the doc string
compile_node(comp, pns->nodes[0]);
// store the doc string
compile_store_id(comp, MP_QSTR___doc__);
}
}
#else
(void)comp;
(void)pn;
#endif
}
STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
comp->pass = pass;
comp->scope_cur = scope;
comp->next_label = 1;
EMIT_ARG(start_pass, pass, scope);
if (comp->pass == MP_PASS_SCOPE) {
// reset maximum stack sizes in scope
// they will be computed in this first pass
scope->stack_size = 0;
scope->exc_stack_size = 0;
}
// compile
if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) {
assert(scope->kind == SCOPE_MODULE);
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
compile_node(comp, pns->nodes[0]); // compile the expression
EMIT(return_value);
} else if (scope->kind == SCOPE_MODULE) {
if (!comp->is_repl) {
check_for_doc_string(comp, scope->pn);
}
compile_node(comp, scope->pn);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(return_value);
} else if (scope->kind == SCOPE_FUNCTION) {
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
// work out number of parameters, keywords and default parameters, and add them to the id_info array
// must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
if (comp->pass == MP_PASS_SCOPE) {
comp->have_star = false;
apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param);
}
#if MICROPY_EMIT_NATIVE
else if (scope->emit_options == MP_EMIT_OPT_VIPER) {
// compile annotations; only needed on latter compiler passes
// only needed for viper emitter
// argument annotations
apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_annotations);
// pns->nodes[2] is return/whole function annotation
mp_parse_node_t pn_annotation = pns->nodes[2];
if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
// nodes[2] can be null or a test-expr
if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type);
} else {
compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier");
}
}
}
#endif // MICROPY_EMIT_NATIVE
compile_node(comp, pns->nodes[3]); // 3 is function body
// emit return if it wasn't the last opcode
if (!EMIT(last_emit_was_return_value)) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
EMIT(return_value);
}
} else if (scope->kind == SCOPE_LAMBDA) {
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3);
// work out number of parameters, keywords and default parameters, and add them to the id_info array
// must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
if (comp->pass == MP_PASS_SCOPE) {
comp->have_star = false;
apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param);
}
compile_node(comp, pns->nodes[1]); // 1 is lambda body
// if the lambda is a generator, then we return None, not the result of the expression of the lambda
if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
EMIT(pop_top);
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
}
EMIT(return_value);
} else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) {
// a bit of a hack at the moment
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];
// We need a unique name for the comprehension argument (the iterator).
// CPython uses .0, but we should be able to use anything that won't
// clash with a user defined variable. Best to use an existing qstr,
// so we use the blank qstr.
qstr qstr_arg = MP_QSTR_;
if (comp->pass == MP_PASS_SCOPE) {
bool added;
id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added);
assert(added);
id_info->kind = ID_INFO_KIND_LOCAL;
scope->num_pos_args = 1;
}
if (scope->kind == SCOPE_LIST_COMP) {
EMIT_ARG(build_list, 0);
} else if (scope->kind == SCOPE_DICT_COMP) {
EMIT_ARG(build_map, 0);
#if MICROPY_PY_BUILTINS_SET
} else if (scope->kind == SCOPE_SET_COMP) {
EMIT_ARG(build_set, 0);
#endif
}
compile_load_id(comp, qstr_arg);
compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0);
if (scope->kind == SCOPE_GEN_EXPR) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
}
EMIT(return_value);
} else {
assert(scope->kind == SCOPE_CLASS);
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef);
if (comp->pass == MP_PASS_SCOPE) {
bool added;
id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added);
assert(added);
id_info->kind = ID_INFO_KIND_LOCAL;
}
compile_load_id(comp, MP_QSTR___name__);
compile_store_id(comp, MP_QSTR___module__);
EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name
compile_store_id(comp, MP_QSTR___qualname__);
check_for_doc_string(comp, pns->nodes[2]);
compile_node(comp, pns->nodes[2]); // 2 is class body
id_info_t *id = scope_find(scope, MP_QSTR___class__);
assert(id != NULL);
if (id->kind == ID_INFO_KIND_LOCAL) {
EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
} else {
EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
}
EMIT(return_value);
}
EMIT(end_pass);
// make sure we match all the exception levels
assert(comp->cur_except_level == 0);
}
#if MICROPY_EMIT_INLINE_ASM
// requires 3 passes: SCOPE, CODE_SIZE, EMIT
STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
comp->pass = pass;
comp->scope_cur = scope;
comp->next_label = 1;
if (scope->kind != SCOPE_FUNCTION) {
compile_syntax_error(comp, MP_PARSE_NODE_NULL, "inline assembler must be a function");
return;
}
if (comp->pass > MP_PASS_SCOPE) {
EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error);
}
// get the function definition parse node
assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);
//qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name
// parameters are in pns->nodes[1]
if (comp->pass == MP_PASS_CODE_SIZE) {
mp_parse_node_t *pn_params;
int n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params);
scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params);
if (comp->compile_error != MP_OBJ_NULL) {
goto inline_asm_error;
}
}
// pns->nodes[2] is function return annotation
mp_uint_t type_sig = MP_NATIVE_TYPE_INT;
mp_parse_node_t pn_annotation = pns->nodes[2];
if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
// nodes[2] can be null or a test-expr
if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
switch (ret_type) {
case MP_QSTR_object: type_sig = MP_NATIVE_TYPE_OBJ; break;
case MP_QSTR_bool: type_sig = MP_NATIVE_TYPE_BOOL; break;
case MP_QSTR_int: type_sig = MP_NATIVE_TYPE_INT; break;
case MP_QSTR_uint: type_sig = MP_NATIVE_TYPE_UINT; break;
default: compile_syntax_error(comp, pn_annotation, "unknown type"); return;
}
} else {
compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier");
}
}
mp_parse_node_t pn_body = pns->nodes[3]; // body
mp_parse_node_t *nodes;
int num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes);
for (int i = 0; i < num; i++) {
assert(MP_PARSE_NODE_IS_STRUCT(nodes[i]));
mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i];
if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) {
// no instructions
continue;
} else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) {
// not an instruction; error
not_an_instruction:
compile_syntax_error(comp, nodes[i], "expecting an assembler instruction");
return;
}
// check structure of parse node
assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0]));
if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) {
goto not_an_instruction;
}
pns2 = (mp_parse_node_struct_t*)pns2->nodes[0];
if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) {
goto not_an_instruction;
}
if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) {
goto not_an_instruction;
}
if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) {
goto not_an_instruction;
}
// parse node looks like an instruction
// get instruction name and args
qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren
mp_parse_node_t *pn_arg;
int n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg);
// emit instructions
if (op == MP_QSTR_label) {
if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) {
compile_syntax_error(comp, nodes[i], "'label' requires 1 argument");
return;
}
uint lab = comp_next_label(comp);
if (pass > MP_PASS_SCOPE) {
if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) {
compile_syntax_error(comp, nodes[i], "label redefined");
return;
}
}
} else if (op == MP_QSTR_align) {
if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
compile_syntax_error(comp, nodes[i], "'align' requires 1 argument");
return;
}
if (pass > MP_PASS_SCOPE) {
mp_asm_base_align((mp_asm_base_t*)comp->emit_inline_asm,
MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]));
}
} else if (op == MP_QSTR_data) {
if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
compile_syntax_error(comp, nodes[i], "'data' requires at least 2 arguments");
return;
}
if (pass > MP_PASS_SCOPE) {
mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]);
for (uint j = 1; j < n_args; j++) {
if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) {
compile_syntax_error(comp, nodes[i], "'data' requires integer arguments");
return;
}
mp_asm_base_data((mp_asm_base_t*)comp->emit_inline_asm,
bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j]));
}
}
} else {
if (pass > MP_PASS_SCOPE) {
EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
}
}
if (comp->compile_error != MP_OBJ_NULL) {
pns = pns2; // this is the parse node that had the error
goto inline_asm_error;
}
}
if (comp->pass > MP_PASS_SCOPE) {
EMIT_INLINE_ASM_ARG(end_pass, type_sig);
if (comp->pass == MP_PASS_EMIT) {
void *f = mp_asm_base_get_code((mp_asm_base_t*)comp->emit_inline_asm);
mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM,
f, mp_asm_base_get_code_size((mp_asm_base_t*)comp->emit_inline_asm),
NULL, comp->scope_cur->num_pos_args, 0, type_sig);
}
}
if (comp->compile_error != MP_OBJ_NULL) {
// inline assembler had an error; set line for its exception
inline_asm_error:
comp->compile_error_line = pns->source_line;
}
}
#endif
STATIC void scope_compute_things(scope_t *scope) {
// in Micro Python we put the *x parameter after all other parameters (except **y)
if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
id_info_t *id_param = NULL;
for (int i = scope->id_info_len - 1; i >= 0; i--) {
id_info_t *id = &scope->id_info[i];
if (id->flags & ID_FLAG_IS_STAR_PARAM) {
if (id_param != NULL) {
// swap star param with last param
id_info_t temp = *id_param; *id_param = *id; *id = temp;
}
break;
} else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
id_param = id;
}
}
}
// in functions, turn implicit globals into explicit globals
// compute the index of each local
scope->num_locals = 0;
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
// __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
continue;
}
if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
}
// params always count for 1 local, even if they are a cell
if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
id->local_num = scope->num_locals++;
}
}
// compute the index of cell vars
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
// in Micro Python the cells come right after the fast locals
// parameters are not counted here, since they remain at the start
// of the locals, even if they are cell vars
if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
id->local_num = scope->num_locals;
scope->num_locals += 1;
}
}
// compute the index of free vars
// make sure they are in the order of the parent scope
if (scope->parent != NULL) {
int num_free = 0;
for (int i = 0; i < scope->parent->id_info_len; i++) {
id_info_t *id = &scope->parent->id_info[i];
if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
for (int j = 0; j < scope->id_info_len; j++) {
id_info_t *id2 = &scope->id_info[j];
if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
// in Micro Python the frees come first, before the params
id2->local_num = num_free;
num_free += 1;
}
}
}
}
// in Micro Python shift all other locals after the free locals
if (num_free > 0) {
for (int i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
id->local_num += num_free;
}
}
scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
scope->num_locals += num_free;
}
}
}
#if !MICROPY_PERSISTENT_CODE_SAVE
STATIC
#endif
mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
// put compiler state on the stack, it's relatively small
compiler_t comp_state = {0};
compiler_t *comp = &comp_state;
comp->source_file = source_file;
comp->is_repl = is_repl;
// create the module scope
scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt);
// create standard emitter; it's used at least for MP_PASS_SCOPE
emit_t *emit_bc = emit_bc_new();
// compile pass 1
comp->emit = emit_bc;
#if MICROPY_EMIT_NATIVE
comp->emit_method_table = &emit_bc_method_table;
#endif
uint max_num_labels = 0;
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
if (false) {
#if MICROPY_EMIT_INLINE_ASM
} else if (s->emit_options == MP_EMIT_OPT_ASM) {
compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
#endif
} else {
compile_scope(comp, s, MP_PASS_SCOPE);
}
// update maximim number of labels needed
if (comp->next_label > max_num_labels) {
max_num_labels = comp->next_label;
}
}
// compute some things related to scope and identifiers
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
scope_compute_things(s);
}
// set max number of labels now that it's calculated
emit_bc_set_max_num_labels(emit_bc, max_num_labels);
// compile pass 2 and 3
#if MICROPY_EMIT_NATIVE
emit_t *emit_native = NULL;
#endif
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
if (false) {
// dummy
#if MICROPY_EMIT_INLINE_ASM
} else if (s->emit_options == MP_EMIT_OPT_ASM) {
// inline assembly
if (comp->emit_inline_asm == NULL) {
comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels);
}
comp->emit = NULL;
comp->emit_inline_asm_method_table = &ASM_EMITTER(method_table);
compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
if (comp->compile_error == MP_OBJ_NULL) {
compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
}
#endif
} else {
// choose the emit type
switch (s->emit_options) {
#if MICROPY_EMIT_NATIVE
case MP_EMIT_OPT_NATIVE_PYTHON:
case MP_EMIT_OPT_VIPER:
if (emit_native == NULL) {
emit_native = NATIVE_EMITTER(new)(&comp->compile_error, max_num_labels);
}
comp->emit_method_table = &NATIVE_EMITTER(method_table);
comp->emit = emit_native;
EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0);
break;
#endif // MICROPY_EMIT_NATIVE
default:
comp->emit = emit_bc;
#if MICROPY_EMIT_NATIVE
comp->emit_method_table = &emit_bc_method_table;
#endif
break;
}
// need a pass to compute stack size
compile_scope(comp, s, MP_PASS_STACK_SIZE);
// second last pass: compute code size
if (comp->compile_error == MP_OBJ_NULL) {
compile_scope(comp, s, MP_PASS_CODE_SIZE);
}
// final pass: emit code
if (comp->compile_error == MP_OBJ_NULL) {
compile_scope(comp, s, MP_PASS_EMIT);
}
}
}
if (comp->compile_error != MP_OBJ_NULL) {
// if there is no line number for the error then use the line
// number for the start of this scope
compile_error_set_line(comp, comp->scope_cur->pn);
// add a traceback to the exception using relevant source info
mp_obj_exception_add_traceback(comp->compile_error, comp->source_file,
comp->compile_error_line, comp->scope_cur->simple_name);
}
// free the emitters
emit_bc_free(emit_bc);
#if MICROPY_EMIT_NATIVE
if (emit_native != NULL) {
NATIVE_EMITTER(free)(emit_native);
}
#endif
#if MICROPY_EMIT_INLINE_ASM
if (comp->emit_inline_asm != NULL) {
ASM_EMITTER(free)(comp->emit_inline_asm);
}
#endif
// free the parse tree
mp_parse_tree_clear(parse_tree);
// free the scopes
mp_raw_code_t *outer_raw_code = module_scope->raw_code;
for (scope_t *s = module_scope; s;) {
scope_t *next = s->next;
scope_free(s);
s = next;
}
if (comp->compile_error != MP_OBJ_NULL) {
nlr_raise(comp->compile_error);
} else {
return outer_raw_code;
}
}
mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, emit_opt, is_repl);
// return function that executes the outer module
return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL);
}
#endif // MICROPY_ENABLE_COMPILER