e92c9aa9c9
This benchmarking test suite is intended to be run on any MicroPython target. As such all tests are parameterised with N and M: N is the approximate CPU frequency (in MHz) of the target and M is the approximate amount of heap memory (in kbytes) available on the target. When running the benchmark suite these parameters must be specified and then each test is tuned to run on that target in a reasonable time (<1 second). The test scripts are not standalone: they require adding some extra code at the end to run the test with the appropriate parameters. This is done automatically by the run-perfbench.py script, in such a way that imports are minimised (so the tests can be run on targets without filesystem support). To interface with the benchmarking framework, each test provides a bm_params dict and a bm_setup function, with the later taking a set of parameters (chosen based on N, M) and returning a pair of functions, one to run the test and one to get the results. When running the test the number of microseconds taken by the test are recorded. Then this is converted into a benchmark score by inverting it (so higher number is faster) and normalising it with an appropriate factor (based roughly on the amount of work done by the test, eg number of iterations). Test outputs are also compared against a "truth" value, computed by running the test with CPython. This provides a basic way of making sure the test actually ran correctly. Each test is run multiple times and the results averaged and standard deviation computed. This is output as a summary of the test. To make comparisons of performance across different runs the run-perfbench.py script also includes a diff mode that reads in the output of two previous runs and computes the difference in performance. Reports are given as a percentage change in performance with a combined standard deviation to give an indication if the noise in the benchmarking is less than the thing that is being measured. Example invocations for PC, pyboard and esp8266 targets respectively: $ ./run-perfbench.py 1000 1000 $ ./run-perfbench.py --pyboard 100 100 $ ./run-perfbench.py --pyboard --device /dev/ttyUSB0 50 25
242 lines
8.1 KiB
Python
Executable File
242 lines
8.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# This file is part of the MicroPython project, http://micropython.org/
|
|
# The MIT License (MIT)
|
|
# Copyright (c) 2019 Damien P. George
|
|
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
import argparse
|
|
from glob import glob
|
|
|
|
sys.path.append('../tools')
|
|
import pyboard
|
|
|
|
# Paths for host executables
|
|
if os.name == 'nt':
|
|
CPYTHON3 = os.getenv('MICROPY_CPYTHON3', 'python3.exe')
|
|
MICROPYTHON = os.getenv('MICROPY_MICROPYTHON', '../ports/windows/micropython.exe')
|
|
else:
|
|
CPYTHON3 = os.getenv('MICROPY_CPYTHON3', 'python3')
|
|
MICROPYTHON = os.getenv('MICROPY_MICROPYTHON', '../ports/unix/micropython')
|
|
|
|
PYTHON_TRUTH = CPYTHON3
|
|
|
|
BENCH_SCRIPT_DIR = 'perf_bench/'
|
|
|
|
def compute_stats(lst):
|
|
avg = 0
|
|
var = 0
|
|
for x in lst:
|
|
avg += x
|
|
var += x * x
|
|
avg /= len(lst)
|
|
var = max(0, var / len(lst) - avg ** 2)
|
|
return avg, var ** 0.5
|
|
|
|
def run_script_on_target(target, script):
|
|
output = b''
|
|
err = None
|
|
|
|
if isinstance(target, pyboard.Pyboard):
|
|
# Run via pyboard interface
|
|
try:
|
|
target.enter_raw_repl()
|
|
output = target.exec_(script)
|
|
except pyboard.PyboardError as er:
|
|
err = er
|
|
else:
|
|
# Run local executable
|
|
try:
|
|
p = subprocess.run([target], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, input=script)
|
|
output = p.stdout
|
|
except subprocess.CalledProcessError as er:
|
|
err = er
|
|
|
|
return str(output.strip(), 'ascii'), err
|
|
|
|
def run_feature_test(target, test):
|
|
with open('feature_check/' + test + '.py', 'rb') as f:
|
|
script = f.read()
|
|
output, err = run_script_on_target(target, script)
|
|
if err is None:
|
|
return output
|
|
else:
|
|
return 'CRASH: %r' % err
|
|
|
|
def run_benchmark_on_target(target, script):
|
|
output, err = run_script_on_target(target, script)
|
|
if err is None:
|
|
time, norm, result = output.split(None, 2)
|
|
try:
|
|
return int(time), int(norm), result
|
|
except ValueError:
|
|
return -1, -1, 'CRASH: %r' % output
|
|
else:
|
|
return -1, -1, 'CRASH: %r' % err
|
|
|
|
def run_benchmarks(target, param_n, param_m, n_average, test_list):
|
|
skip_native = run_feature_test(target, 'native_check') != ''
|
|
|
|
for test_file in sorted(test_list):
|
|
print(test_file + ': ', end='')
|
|
|
|
# Check if test should be skipped
|
|
skip = skip_native and test_file.find('viper_') != -1
|
|
if skip:
|
|
print('skip')
|
|
continue
|
|
|
|
# Create test script
|
|
with open(test_file, 'rb') as f:
|
|
test_script = f.read()
|
|
with open(BENCH_SCRIPT_DIR + 'benchrun.py', 'rb') as f:
|
|
test_script += f.read()
|
|
test_script += b'bm_run(%u, %u)\n' % (param_n, param_m)
|
|
|
|
# Write full test script if needed
|
|
if 0:
|
|
with open('%s.full' % test_file, 'wb') as f:
|
|
f.write(test_script)
|
|
|
|
# Run MicroPython a given number of times
|
|
times = []
|
|
scores = []
|
|
error = None
|
|
result_out = None
|
|
for _ in range(n_average):
|
|
time, norm, result = run_benchmark_on_target(target, test_script)
|
|
if time < 0 or norm < 0:
|
|
error = result
|
|
break
|
|
if result_out is None:
|
|
result_out = result
|
|
elif result != result_out:
|
|
error = 'FAIL self'
|
|
break
|
|
times.append(time)
|
|
scores.append(1e6 * norm / time)
|
|
|
|
# Check result against truth if needed
|
|
if error is None and result_out != 'None':
|
|
_, _, result_exp = run_benchmark_on_target(PYTHON_TRUTH, test_script)
|
|
if result_out != result_exp:
|
|
error = 'FAIL truth'
|
|
break
|
|
|
|
if error is not None:
|
|
print(error)
|
|
else:
|
|
t_avg, t_sd = compute_stats(times)
|
|
s_avg, s_sd = compute_stats(scores)
|
|
print('{:.2f} {:.4f} {:.2f} {:.4f}'.format(t_avg, 100 * t_sd / t_avg, s_avg, 100 * s_sd / s_avg))
|
|
if 0:
|
|
print(' times: ', times)
|
|
print(' scores:', scores)
|
|
|
|
sys.stdout.flush()
|
|
|
|
def parse_output(filename):
|
|
with open(filename) as f:
|
|
params = f.readline()
|
|
n, m, _ = params.strip().split()
|
|
n = int(n.split('=')[1])
|
|
m = int(m.split('=')[1])
|
|
data = []
|
|
for l in f:
|
|
if l.find(': ') != -1 and l.find(': skip') == -1 and l.find('CRASH: ') == -1:
|
|
name, values = l.strip().split(': ')
|
|
values = tuple(float(v) for v in values.split())
|
|
data.append((name,) + values)
|
|
return n, m, data
|
|
|
|
def compute_diff(file1, file2, diff_score):
|
|
# Parse output data from previous runs
|
|
n1, m1, d1 = parse_output(file1)
|
|
n2, m2, d2 = parse_output(file2)
|
|
|
|
# Print header
|
|
if diff_score:
|
|
print('diff of scores (higher is better)')
|
|
else:
|
|
print('diff of microsecond times (lower is better)')
|
|
if n1 == n2 and m1 == m2:
|
|
hdr = 'N={} M={}'.format(n1, m1)
|
|
else:
|
|
hdr = 'N={} M={} vs N={} M={}'.format(n1, m1, n2, m2)
|
|
print('{:24} {:>10} -> {:>10} {:>10} {:>7}% (error%)'.format(hdr, file1, file2, 'diff', 'diff'))
|
|
|
|
# Print entries
|
|
while d1 and d2:
|
|
if d1[0][0] == d2[0][0]:
|
|
# Found entries with matching names
|
|
entry1 = d1.pop(0)
|
|
entry2 = d2.pop(0)
|
|
name = entry1[0].rsplit('/')[-1]
|
|
av1, sd1 = entry1[1 + 2 * diff_score], entry1[2 + 2 * diff_score]
|
|
av2, sd2 = entry2[1 + 2 * diff_score], entry2[2 + 2 * diff_score]
|
|
sd1 *= av1 / 100 # convert from percent sd to absolute sd
|
|
sd2 *= av2 / 100 # convert from percent sd to absolute sd
|
|
av_diff = av2 - av1
|
|
sd_diff = (sd1 ** 2 + sd2 ** 2) ** 0.5
|
|
percent = 100 * av_diff / av1
|
|
percent_sd = 100 * sd_diff / av1
|
|
print('{:24} {:10.2f} -> {:10.2f} : {:+10.2f} = {:+7.3f}% (+/-{:.2f}%)'.format(name, av1, av2, av_diff, percent, percent_sd))
|
|
elif d1[0][0] < d2[0][0]:
|
|
d1.pop(0)
|
|
else:
|
|
d2.pop(0)
|
|
|
|
def main():
|
|
cmd_parser = argparse.ArgumentParser(description='Run benchmarks for MicroPython')
|
|
cmd_parser.add_argument('-t', '--diff-time', action='store_true', help='diff time outputs from a previous run')
|
|
cmd_parser.add_argument('-s', '--diff-score', action='store_true', help='diff score outputs from a previous run')
|
|
cmd_parser.add_argument('-p', '--pyboard', action='store_true', help='run tests via pyboard.py')
|
|
cmd_parser.add_argument('-d', '--device', default='/dev/ttyACM0', help='the device for pyboard.py')
|
|
cmd_parser.add_argument('-a', '--average', default='8', help='averaging number')
|
|
cmd_parser.add_argument('N', nargs=1, help='N parameter (approximate target CPU frequency)')
|
|
cmd_parser.add_argument('M', nargs=1, help='M parameter (approximate target heap in kbytes)')
|
|
cmd_parser.add_argument('files', nargs='*', help='input test files')
|
|
args = cmd_parser.parse_args()
|
|
|
|
if args.diff_time or args.diff_score:
|
|
compute_diff(args.N[0], args.M[0], args.diff_score)
|
|
sys.exit(0)
|
|
|
|
# N, M = 50, 25 # esp8266
|
|
# N, M = 100, 100 # pyboard, esp32
|
|
# N, M = 1000, 1000 # PC
|
|
N = int(args.N[0])
|
|
M = int(args.M[0])
|
|
n_average = int(args.average)
|
|
|
|
if args.pyboard:
|
|
target = pyboard.Pyboard(args.device)
|
|
target.enter_raw_repl()
|
|
else:
|
|
target = MICROPYTHON
|
|
|
|
if len(args.files) == 0:
|
|
tests_skip = ('benchrun.py',)
|
|
if M <= 25:
|
|
# These scripts are too big to be compiled by the target
|
|
tests_skip += ('bm_chaos.py', 'bm_hexiom.py', 'misc_raytrace.py')
|
|
tests = sorted(
|
|
BENCH_SCRIPT_DIR + test_file for test_file in os.listdir(BENCH_SCRIPT_DIR)
|
|
if test_file.endswith('.py') and test_file not in tests_skip
|
|
)
|
|
else:
|
|
tests = sorted(args.files)
|
|
|
|
print('N={} M={} n_average={}'.format(N, M, n_average))
|
|
|
|
run_benchmarks(target, N, M, n_average, tests)
|
|
|
|
if isinstance(target, pyboard.Pyboard):
|
|
target.exit_raw_repl()
|
|
target.close()
|
|
|
|
if __name__ == "__main__":
|
|
main()
|